Выдержка из книги
Казимиров Н.И.
Введение в аксиоматическую теорию множеств
Таким образом, аксиома выбора не зависит от остальных аксиом теории множеств, и может быть принята как еще одна аксиома нашей теории. Но поскольку она встречает неодобрение многих математиков ( в особенности с появлением в последнее время не менее привлекательной аксиомы детерминированности AD, противоречащей АС), мы не будем рассматривать ее как еще одну аксиому ZF, а для теории ZF AC введем специальное обозначение ZFC. Следуя Куратовскому [9], все утверждения, которые мы будем доказывать в рамках теории ZFC, мы будем отмечать знаком, выставляя его перед ключевым словом утверждения, например, Теорема.