Коррозионное растрескивание высокопрочных сталей ( предел прочности более 1 4 ГН / м2) наблюдается в большинстве сред [3, 36, 37], включая влажный H2S, аэрированные растворы NaCl, Na2SO4 и NaNOs, растворы аммиака, морскую и промышленную атмосферу. В течение многих лет было широко распространено мнение о том, что водородное охрупчивание вызывает коррозионное растрескивание высокопрочных сталей, экспонированных во влажном H2S или некоторых кислых средах, но механизм1 растрескивания в других средах был менее ясен. Фелпс [36], исходя из этого, отметил, что зависимость электрохимической поляризации от времени до разрушения может являться критерием того, происходит ли растрескивание за счет водородного охрупчивания или за счет растворения активных участков. В результате, если коррозионное растрескивание вызвано локализованной коррозией вдоль активных участков, имеющихся в стали, то наложение катодного тока должно подавить коррозионную реакцию и привести к существенному увеличению времени до разрушения. Наоборот, наложение анодного тока должно повысить скорость коррозии. Если же причиной коррозионного растрескивания является водород, выделяющийся в процессе общей коррозии, то наложение катодного тока должно привести к выделению еще большего количества водорода и соответственно уменьшить время до разрушения. Наложение анодного тока должно уменьшить выделение водорода и, следовательно, увеличить время до разрушения. На рис. 5.32 представлены различные типы кривых время до растрескивания - поляризация, где на основании описанных выше представлений указаны области, в которых разрушение происходит за счет или водородного охрупчивания, или коррозии активных участков.