Изложенный в предыдущем параграфе простой эмпирический прием, оказавшийся пригодным для расчета сопротивления трения в турбулентном ... - Большая Энциклопедия Нефти и Газа
Изложенный в предыдущем параграфе простой эмпирический прием, оказавшийся пригодным для расчета сопротивления трения в турбулентном пограничном слое на пластине с характерными для нее гладкими профилями скоростей в сечениях слоя, станет недостаточным при появлении нового фактора - обратного перепада давления. При одном взгляде на семейство кривых, показанное на рис. 260, можно сразу заметить характерное для диффузорного участка пограничного слоя возникновение деформации профилей скорости, все более и более ярко выраженной при приближении к точке отрыва. Отрыв турбулентного пограничного слоя располагается гораздо ниже по потоку от начала диффузорной области - точки минимума давления - чем отрыв ламинарного пограничного слоя. Физически это объясняется тем, что турбулентное трение между отдельными жидкими слоями внутри пограничного слоя значительно интенсивнее, чем трение в ламинарном пограничном слое; при прочих равных условиях это усиливает увлечение внешним потоком пристеночной жидкости и приводит к затягиванию отрыва. Аналогичным объяснением служит большая заполненность турбулентных профилей скорости по сравнению с урезанными ламинарными профилями, что имеет следствием перераспределение кинетической энергии в сторону ее увеличения в пристеночных слоях и является причиной затягивания отрыва. Ламинарный пограничный слой, как правило, отрывается в небольшом по сравнению с турбулентным слоем удалении от точки минимума давления. Большая продольная протяженность диффузорной области турбулентного пограничного слоя и сравнительно с ламинарным слоем значительное удаление точки отрыва от точки минимума давления служит одной из причин трудности теоретического предсказания расположения точки отрыва на поверхности тела.