Выдержка из книги
Мельников О.В.
Общая алгебра Т.1
Если ф является изоморфизмом как колец, так и частично упорядоченных множеств, то он называется порядковым изоморфизмом. Если ф: R - R - порядковый гомоморфизм, то Кегф оказывается выпуклым ( как подмножество частично упорядоченного множества) двусторонним идеалом кольца R. Факторкольцо R / I по выпуклому двустороннему идеалу / становится частично упорядоченным кольцом, если положить х - - I у / в случае, когда х у в R. Таким образом, всякий выпуклый двусторонний идеал частично упорядоченного кольца является ядром некоторого порядкового гомоморфизма.