Сама S является своей подполугруппой; подполугруппа, отличная от S, называется собственной. Всякая неодноэлементная полугруппа имеет ... - Большая Энциклопедия Нефти и Газа
Выдержка из книги
Артамонов В.А.
Общая алгебра. Т.2
Сама S является своей подполугруппой; подполугруппа, отличная от S, называется собственной. Всякая неодноэлементная полугруппа имеет собственные подполугруппы. Подполугруппа Т полугруппы S сама, очевидно, будет полугруппой относительно операции, индуцированной на Т операцией, заданной на S; если при этом Т является группой, то Т называют подгруппой из S. Всякая подгруппа полугруппы содержится в некоторой максимальной подгруппе; максимальные подгруппы попарно не пересекаются. В случае, когда S - периодическая группа, всякая ее подполугруппа будет подгруппой; обратно, если все подполугруппы полугруппы S суть подгруппы, то S - периодическая группа.