Масштаб - координата - Большая Энциклопедия Нефти и Газа, статья, страница 3
Демократия с элементами диктатуры - все равно что запор с элементами поноса. Законы Мерфи (еще...)

Масштаб - координата

Cтраница 3


Соотношение (2.15), как и (2.6), описывает преобразование волновых аберраций третьего порядка при распространении сферической волны, но в отличие от (2.6) дает связь между аберрациями в оптически сопряженных плоскостях. Если в соотношении (2.6) при переходе в другую плоскость зрачковые координаты заменяются линейными комбинациями новых зрачковых координат и координат центра кривизны сферической волны, в результате чего происходит перераспределение аберраций по типам, то в (2.15) все сводится к изменению масштаба координат зрачка и предмета, а перераспределений аберраций по типам не происходит. Конечно, именно к такому результату для сопряженных плоскостей должно было привести проективное преобразование, которому подчиняется замена переменных в аберрациях третьего порядка.  [31]

После подготовки исходных данных приступают к работе на электромоделирующей установке. Рекомендуется следующий порядок работы: с помощью соединительных проводов собирается электромоделирующая установка согласно схеме, представленной на рис. 11 - 1; согласно подготовленным исходным данным с помощью универсального моста УМ-3 или приборов типа ТТ-3, Ц-20 и др. устанавливаются значения сопротивлений г электромодели и сопротивлений Rr и RB блока граничных сопротивлений; с помощью коммутационных проводов производится подключение интересующих исследователя ( согласно масштабу координаты ki) ячеек электромодели через блок катодного повторителя к осциллографу; производится включение источника питания УИП-1, выпрямителя ВСА-6М и осциллографа; производится запись переходного электрического процесса электромодели на осциллографе путем включения тумблера процесса на блоке питания электромодели; производится расшифровка осциллограмм.  [32]

Через полученные точки проводят наиболее вероятную кривую. Серия таких кривых для различных температур во всем диапазоне изученных условий позволяет описать объемное поведение газа данного состава. Одновременно необходимо построить семейство кривых постоянного давления ( изобары), описывающих изменение объема газов с изменением температуры. Для получения окончательных результатов кривые зависимости объема газов от давления и температуры требуют некоторого сглаживания. Такие графические представления объемного поведения являются менее трудоемкими, но не менее целесообразными, чем уравнения состояния. Как отмечалось ранее, объем газа при постоянной температуре настолько сильно изменяется с изменением давления, что графическое представление этой зависимости в широком диапазоне изменения давлений становится затруднительным. При охвате широкой области изменения давлений масштаб координаты объема должен быть очень крупным, Для устранения этой трудности был испробован ряд способов.  [33]

Через полученные точки проводят наиболее вероятную кривую. Серия таких кривых для различных температур во всем диапазоне изученных условий позволяет описать объемное поведение газа данного состава. Одновременно необходимо построить семейство кривых постоянного давления ( изобары), описывающих изменение объема газов с изменением температуры. Для получения окончательных результатов кривые зависимости объема газов от давления и температуры требуют некоторого сглаживания. Такие графические представления объемного поведения являются менее трудоемкими, но не менее целесообразными, чем уравнения состояния. Как отмечалось ранее, объем газа при постоянной температуре настолько сильно изменяется с изменением давления, что графическое представление этой зависимости в широком диапазоне изменения давлений становится затруднительным. При охвате широкой области изменения давлений масштаб координаты объема должен быть очень крупным. Для устранения этой трудности был испробован ряд способов.  [34]



Страницы:      1    2    3