Cтраница 2
На заводе фирмы Хехст, ФРГ [ 10а ] г сооружена промышленная установка производительностью 45 тыс. т / год ацетилена и этилена, вырабатываемых из углеводородного сырья при помощи процесса, известного под названием высокотемпературного пиролиза. Здесь применен реактор специальной конструкции; имеется система очистки газов. В охлаждаемой водой металлической камере сгорания водород, метан или отходящий газ процесса сжигаются с приблизительно стехиометриче-ским количеством кислорода, к которому добавляют водяной пар. Горячие газы сгорания проходят через реакционное устройство; одновременно подается ( предпочтительно в парофазном состоянии) соответствующее углеводородное сырье. За счет тепла газов сгорания нагревается углеводородное сырье, из которого в результате протекающих реакций образуются ацетилен и этилен. Выходящий из реактора газ подвергают закалочному охлаждению в устройстве специальной конструкции. Образования элементарного углерода ( сажи) при этом процессе не наблюдается. Жидкие побочные продукты ( тяжелое ароматическое масло) удаляют на ступени охлаждения и используют в дальнейшем как тяжелое топливо. [16]
На заводе фирмы Хехст, ФРГ [ 10а К сооружена промышленная установка производительностью 45 тыс. ml год ацетилена и этилена, вырабатываемых из углеводородного сырья при помощи процесса, известного под названием высокотемпературного пиролиза. Здесь применен реактор специальной конструкции; имеется система очистки газов. В охлаждаемой водой металлической камере сгорания водород, метан или отходящий газ процесса сжигаются с приблизительно стехиометриче-ским количеством кислорода, к которому добавляют водяной пар. Горячие газы сгорания проходят через реакционное устройство; одновременно подается ( предпочтительно в парофазном состоянии) соответствующее углеводородное сырье. За счет тепла газов сгорания нагревается углеводородное сырье, из которого в результате протекающих реакций образуются ацетилен и этилен. Выходящий из реактора газ подвергают закалочному охлаждению в устройстве специальной конструкции. Образования элементарного углерода ( сажи) при этом процессе не наблюдается. Жидкие побочные продукты ( тяжелое ароматическое масло) удаляют на ступени охлаждения и используют в дальнейшем как тяжелое топливо. [17]
Поскольку в ходе реакции катализаторы не претерпевают превращения, теоретически срок их службы неограничен. Однако в практических условиях большинство катализаторов разрушается или постепенно дезактивируется при работе и поэтому их необходимо периодически регенерировать или заменять свежими. Разрушение катализатора вызывается физическими или химическими причинами. Физическое разрушение может быть вызвано механическим истиранием или перегревом и спеканием. Механическое истирание приводит к чрезмерному увеличению потерь вследствие уноса тонких фракций газовыми потоками и резкому увеличению гидравлического сопротивления слоя; спекание ведет к изменению структуры поверхности катализатора и быстрой потере активности. Химическое разрушение является в основном следствием химического взаимодействия между веществом катализатора и соединениями, содержащимися в сырьевом потоке, с образованием стойких продуктов реакции. Причиной химической дезактивации и разрушения может быть и накопление высокомолекулярных соединений, содержащихся в исходном газовом потоке или образующихся при процессе в результате побочных реакций. Обе эти причины ведут к уменьшению числа активных центров на поверхности катализатора и падению активности катализатора. Дезактивацию под действием примесей, содержащихся в газовом потоке, называют отравлением катализатора. Постепенная дезактивация катализатора вследствие накопления отложений на поверхности и вызываемая ею необходимость периодической регенерации весьма часто наблюдается при процессах, ведущих к образованию одного или нескольких нелетучих продуктов реакции. Например, превращение сероуглерода в сероводород процессом гидрирования сопровождается образованием элементарного углерода ( кокса), который необходимо периодически удалять с поверхности катализатора. [18]