Полугрупповой автомат - Большая Энциклопедия Нефти и Газа, статья, страница 2
Любить водку, халяву, революции и быть мудаком - этого еще не достаточно, чтобы называться русским. Законы Мерфи (еще...)

Полугрупповой автомат

Cтраница 2


Так как подполугруппа свободной полугруппы не обязательно свободна, то для полугрупповых автоматов утверждение, аналогичное предложению 4.3, неверно.  [16]

Используя это равенство, проверим, что введенный автомат удовлетворяет аксиомам полугруппового автомата.  [17]

Эти операции на тройке ( F, S, R) задают структуру полугруппового автомата.  [18]

Очевидно, что если все Аа - полугрупповые автоматы, то их декартово произведение также является полугрупповым автоматом.  [19]

В этом случае фактор-автомат Alp ( Ajpl, Г / р2, В / ръ) также является полугрупповым автоматом.  [20]

В основном в книге рассматриваются полугрупповые автоматы, и если в тексте нет никаких оговорок, то под автоматом понимается полугрупповой автомат.  [21]

В заключение этого параграфа отметим еще, что если ( F, Q, R) есть динамический относительно S - автомат, то ему отвечает определенный полугрупповой автомат. Строится он следующим образом.  [22]

В данной конструкции выходной сигнал автомата А2 с помощью отображения 1 / преобразуется во входной сигнал автомата Av Аналогично можно определить параллельное и последовательное соединения для случая полугрупповых автоматов.  [23]

Очевидно, что при этом выполняются аксиомы полугруппового автомата.  [24]

Перейдем к случаю, когда ( А, Х1) - полугрупповой полуавтомат, но действие Х1 на Х2 не задано либо Х2 не замкнуто относительно действия Xt. В этой ситуации данное выше определение соединения не приводит к полугрупповому автомату.  [25]

Полугрунповые автоматы со своими гомоморфизмами также составляют категорию. Легко понять, что F ( ji) действительно есть гомоморфизм полугрупповых автоматов и что F есть функтор из категории абсолютно чистых автоматов в категорию полугрупповых автоматов.  [26]

В дальнейшем этот параграф будет посвящен квазимногообразиям автоматов, насыщенным по входным сигналам, квазимногообразиям автоматов, насыщенным по выходным сигналам, а также некоторым связям между квазимногообразиями автоматов и квазимногообразиями полугрупп. Если нет оговорки, то под словом автомат в этом параграфе будем понимать линейный полугрупповой автомат; вместе с тем отметим, что большинство рассуждений остаются верными и для чистых автоматов.  [27]

Очевидно, что полугруппа S перестановочно-возвратного автомата представляет собой объединение группы G и множества возвратных элементов R. Стандартный автомат полугруппы S может быть представлен последовательно-параллельным соединением группового автомата с группой G и стандартного полугруппового автомата с полугруппой R1, полученной из R в результате добавления двусторонней единицы.  [28]

В § 1 было отмечено, что каждому автомату А - ( А, X, В) отвечает полугрупповой автомат F ( A) ( A, F ( X), В), где F ( X) - свободная полугруппа над множеством X. Рассмотрим связь этого перехода с конструкциями декартового произведения и каскадного соединения автоматов.  [29]

Полугрунповые автоматы со своими гомоморфизмами также составляют категорию. Легко понять, что F ( ji) действительно есть гомоморфизм полугрупповых автоматов и что F есть функтор из категории абсолютно чистых автоматов в категорию полугрупповых автоматов.  [30]



Страницы:      1    2    3