Площадь - теплообменная поверхность - Большая Энциклопедия Нефти и Газа, статья, страница 2
Никому не поставить нас на колени! Мы лежали, и будем лежать! Законы Мерфи (еще...)

Площадь - теплообменная поверхность

Cтраница 2


ВО) - определяются конечные параметры воды и обрабатываемою воздуха при заданных расходах воды и воздуха, начальных параметрах воды и воздуха, площади теплообменной поверхности и обвязки ВО.  [16]

17 К определению средней разности температур. [17]

При подборе испарителей и конденсаторов среднюю разность температур Д / принимают равной 3 - 5 Сдля кожухотрубяых аппаратов и 8 - 12 С при охлаждении воздуха в камерах и конденсаторах с воздушным охлаждением. Если занижена площадь теплообменной поверхности при выборе аппарата или коэффициент теплопередачи уменьшился вследствие загрязнений и осадков при эксплуатации, средняя разность температур Д / возрастает.  [18]

Поэтому чтобы удовлетворить заданным техническим условиям, необходимо сначала выбрать геометрию ребер, а затем уже переходить к расчету размеров теплообменника в целом. В этом отношении бесценным оказывается практический опыт, однако при недостатке его или в дополнение к нему приходят на помощь общие соображения. Прежде всего следует помнить, что наиболее эффективно объем теплообменной матрицы используется в том случае, если отношение площадей теплообменных поверхностей с газовой и жидкостной сторон примерно обратно пропорционально отношению соответствующих коэффициентов теплоотдачи. Это практическое правило должно быть модифицировано с учетом уменьшения эффективности ребра при увеличении его поверхности. Поверхность ребра обычно делают равной примерно половине определенной согласно предшествующим приближениям величины.  [19]

20 Автомобильные холодильники ТЭХ-20 ( а и ХАТЭ-12 ( б. [20]

В бытовых холодильниках применение вентиляторов с целью интенсификации теплообмена - нежелательно, так как это существенно снижает надежность и создает источник шума. В холодильниках малого объема для подвода тепла к холодным спаям, чаще всего используют внутреннюю металлическую обшивку холодильной камеры, а для отвода тепла от горячих спаев - сребренные панели, работающие в условиях свободной конвекции. Однако с увеличением объема холодильной камеры и соответственно тепловых нагрузок на спаях подобные системы становятся малоэффективными, так как простое увеличение площади теплообменной поверхности, как правило, не позволяет отводить тепло при малых перепадах температур, поскольку эффективность работы периферийных участков поверхности резко снижается. Поэтому в холодильниках большого объема часто применяют промежуточные теплоносители. Используют как испарительно-конденсаторные контуры на фреонах у холодных и горячих спаев, так и промежуточные теплоносители ( например, воду), циркулирующие в замкнутых контурах между горячими спаями и теплообменниками под действием разности плотностей в подъемной и опускной ветвях контуров. У этих теплообменников также наилучшие массо-габаритные показатели.  [21]

Такой теплообменник, как нагреватель, трудно рассчитать и, следовательно, сконструировать, поскольку нужно одновременно удовлетворять требованиям для внутренней и наружной поверхностей трубки, а они, как правило, различны. Более того, его конструкция зависит также от выбора источника энергии. Наружная поверхность трубки работает обычно в условиях установившегося течения низкого давления и высокой температуры, из-за чего в материале могут возникнуть достаточно напряженные условия, если при его изготовлении используется, например, углеводород с высоким содержанием серы. На внутреннюю поверхность трубки воздействует существенно нестационарное течение с высоким давлением и высокой температурой. Коэффициенты теплоотдачи на внутренней и наружной поверхностях трубки будут резко отличаться по своей величине, и поэтому требования к площади теплообменной поверхности практически всегда будут различными. Кроме того, имеется еще два ограничения, поскольку отношение внутреннего диаметра к наружному определяется как силовыми, так и тепловыми нагрузками и оптимальное отношение диаметров может не соответствовать требованиям, предъявляемым к площади теплообменной поверхности. К тому же все эти факторы могут противоречить требованиям, предъявляемым к величинам сопротивления трения и мертвого объема. Следовательно, еще до рассмотрения основных теоретических положений нетрудно заметить, что практические возможности и особенности конструкции нагревателя сильно затрудняют задачу исследователя.  [22]

Полный список обозначений приведен в конце этой главы. Правая часть уравнения (2.43) выражает тепловую энергию, подводимую к рабочему телу. Разность температур насадки и рабочего тела Тм - 7V в левой части уравнения должна быть бесконечно малой, и, как показано в гл. Следовательно, суммарный коэффициент теплоотдачи Нсуы должен быть бесконечно большим, чтобы компенсировать малую разность температур. Опять-таки это условие на практике недостижимо, хотя при проектировании можно предпринять некоторые меры, чтобы получить возможно больший коэффициент теплоотдачи в пределах ограничений, предъявляемых к конструкции всей системы. Остается единственный параметр - площадь теплообменной поверхности, которая должна быть бесконечно большой, чтобы приблизиться к идеальным условиям. Очевидно, это также физически недостижимо, но нужно всеми способами стремиться увеличить площадь этой поверхности. Практическим способом увеличения площади поверхности при заданной массе материала регенератора является применение проволок или небольших частиц, ориентированных таким образом, чтобы сделать проходной канал максимально извилистым.  [23]

24 Зависимость коэффициента ЕМ ( асм / а 0р. п от q при кипении на сребренном пучке труб ( IV-2 при. м 8 %. Сплошные линии - R12 ХФ-12 ( пучок № 1, пунктир - R22 ХФ22 ( пучок № 3. [24]

Учитывая режим движения, для / s - 15 С были приняты ленточные турбулизаторы, а для ts - 5 С - спиральные. Скорость хладоносителя в трубах без турбу-лизаторов была принята равной 1 5 м / с, а с турбулизаторами для рассола - 0 6 м / с и для воды - 0 75 м / с, что примерно соответствовало их оптимальным значениям по энергетическим затратам. Энергетическое сопоставление показало, что оребрение труб позволяет экономить от 6 до 10 % электроэнергии при использовании рассола и от 4 до 6 % при использовании воды за счет сокращения 6 при интенсификации теплообмена. Дополнительную экономию энергии 1 - 8 % позволяет получить применение турбулизаторов для рассола ив 1 - 1 5 % для воды. При одинаковом температурном напоре 0 5 С применение оребрения труб позволяет сократить площадь теплообменной поверхности в среднем в 1 7 раза.  [25]

Такой теплообменник, как нагреватель, трудно рассчитать и, следовательно, сконструировать, поскольку нужно одновременно удовлетворять требованиям для внутренней и наружной поверхностей трубки, а они, как правило, различны. Более того, его конструкция зависит также от выбора источника энергии. Наружная поверхность трубки работает обычно в условиях установившегося течения низкого давления и высокой температуры, из-за чего в материале могут возникнуть достаточно напряженные условия, если при его изготовлении используется, например, углеводород с высоким содержанием серы. На внутреннюю поверхность трубки воздействует существенно нестационарное течение с высоким давлением и высокой температурой. Коэффициенты теплоотдачи на внутренней и наружной поверхностях трубки будут резко отличаться по своей величине, и поэтому требования к площади теплообменной поверхности практически всегда будут различными. Кроме того, имеется еще два ограничения, поскольку отношение внутреннего диаметра к наружному определяется как силовыми, так и тепловыми нагрузками и оптимальное отношение диаметров может не соответствовать требованиям, предъявляемым к площади теплообменной поверхности. К тому же все эти факторы могут противоречить требованиям, предъявляемым к величинам сопротивления трения и мертвого объема. Следовательно, еще до рассмотрения основных теоретических положений нетрудно заметить, что практические возможности и особенности конструкции нагревателя сильно затрудняют задачу исследователя.  [26]

Греющий теплоноситель после промежуточного теплообменника поступает во входной газовый коллектор, обеспечивающий равномерное распределение теплоносителя в трубном пучке, и движется в межтрубном пространстве сверху вниз. Питательная вода подается в теплообменные трубы в нижней части трубного пучка и движется внутри них вверх. Подъемное движение пароводяной смеси в тешюобменных трубах способствует хорошей гидродинамике и устойчивой работе ПГ. Движение греющего теплоносителя и рабочего тела осуществляется противоточно по всей длине теплообменных труб. При этой схеме циркуляции температура металла по наружной поверхности трубы ( на участке входа гелия в трубный пучок) может достигать 630 С при перепаде температуры по толщине стенки 46 С в номинальных режимах. Температура трубы в этом месте может быть снижена организацией прямоточной схемы движения гелия и пара на участке пароперегрева ( по расчетным оценкам примерно на 140 С), но при этом перепад температуры по толщине стенки увеличивается до 105 С. Кроме того, организация прямотока на пароперегревательном участке усложняет конструкцию ПГ, так как необходимы дополнительные перекидки теплообменных труб. Учитывая также, что при этом увеличивается площадь необходимой теплообменной поверхности ПГ на 7 % и соответственно повышаются потери давления пароводяной смеси, приняли про-тивоточную схему движения на всем протяжении трубного пучка.  [27]



Страницы:      1    2