Повторяемость - землетрясение - Большая Энциклопедия Нефти и Газа, статья, страница 1
Для любого действия существует аналогичная и прямо противоположная правительственная программа. Законы Мерфи (еще...)

Повторяемость - землетрясение

Cтраница 1


Повторяемость землетрясений: землетрясения могут повторяться в тех местах, где они уже были. Потому зарегистрированные землетрясения задают нижнюю границу максимальных магнитуд землетрясений. Однако выделение областей только по максимальным зарегистрированным землетрясениям дает заниженную оценку из-за короткого интервала наблюдений. Следовательно, вблизи очаговых зон зарегистрированных землетрясений возможны землетрясения с такими же магнитудами в будущем.  [1]

Хотя повторяемость землетрясений быстро увеличивается с уменьшением магнитуды, энергия, высвобождаемая при каждом землетрясении и подсчитанная с помощью любой из формул предыдущего раздела, уменьшается еще быстрее. Поэтому, если рассмотреть землетрясения за ограниченный промежуток времени в любой определенной области или на всем земном шаре, то вообще найдем, что высвобождение энергии в основном имеет место при сравнительно немногих землетрясениях самой большой магнитуды. Это имеет прямое отношение к известной идее о том, что слабые землетрясения могут служить в качестве предохранительного клапана, безопасно освобождая энергию, которая в противном случае могла бы проявиться в виде сильных землетрясений.  [2]

От категории повторяемости землетрясений зависит также и значение коэффициента сочетания усилий от различных нагрузок.  [3]

Для зданий, возводимых в сейсмических районах с повторяемостью землетрясений 1, 2, 3, значения Y следует умножать на 0 85; 1 или 1 15 соответственно.  [4]

Для зданий, возводимых в сейсмических районах с повторяемостью землетрясений 1 2 3, значения i следует умножать на 0 85; 1 или 1 15 соответственно.  [5]

6 Основные экологические проблемы окружающей среды. [6]

Методика оценки закономерностей динамики сейсмического режима изучает вариации углового коэффициента наклона графика повторяемости землетрясений и моделирует форшоковые последовательности с помощью уравнения саморазвивающихся процессов.  [7]

Землетрясения расчетной интенсивности, измеряемые в баллах, подразделены на три категории в зависимости от их средней повторяемости: I категория - раз в 100 лет; II категория - раз в 1ООО лет; III категория - раз в 10ООО лет. Причем нормы обращают внимание на то, что районы строительства с I категорией повторяемости землетрясений являются наиболее опасными для прочности и устойчивости проектируемых сооружений.  [8]

Подсистема генерирования сеточных признаков позволяет преобразовать исходные данные в признаки, адекватные модели прогнозируемого явления. Подсистема позволяет создавать сеточные модели, выявляющие пространственные свойства точечных и линейных объектов, такие как, например, поле сейсмической активности, поле наклона графика повторяемости землетрясений, поля плотности и взвешенной по атрибутивным значениям плотности точек, поля расстояний до точечных или линейных объектов, поля суммарной длины линий в скользящем окне произвольного радиуса, производить нелинейную фильтрацию растровых полей, вычислять произвольные функции нескольких исходных сеточных полей, конструируемых из элементарных функций с использованием алгебраических и логических операций.  [9]

Здесь, следуя A.M. Яглому и Е.А. Новикову [7-9], на примере локально однородной и локально изотропной турбулентности мы изложим основные моменты описания таких систем. Известные законы турбулентности будут получены путем рассмотрения поведения лагранжевых жидких частиц. Таким образом объясняется закон Гутенберга-Рихтера повторяемости землетрясений в зависимости от их интенсивности.  [10]

Этот подход не дает ожидаемого времени будущих землетрясений, пока не используются иные признаки. Моги [425] и Келлер с сотрудниками [315] предположили, что главные землетрясения могут мигрировать вдоль основных сейсмических поясов. Более объективный метод состоит в оценке степени повторяемости землетрясений по степени напряжений или путем анализа прежних данных. По-видимому, между gN и М имеется линейная связь ( N - число землетрясений с магниту - дой, большей, чем М), и это соотношение применимо во всех пространственных масштабах - от местных до глобальных. Значение Ъ меняется также со временем в данном районе, и это может быть использовано для предсказания будущего землетрясения.  [11]

Из анализа эмпирических данных следует, что и водохранилищные, и нагнетательные землетрясения ассоциированы с системой имеющихся в данном регионе земной коры разломов. Это имеет место, в частности, и для Ромашкинского региона. Это в соответствии с теоретическим анализом природы закона повторяемости [5] означает, что воздействие на массив, передаваемое от водохранилища или при нагнетании жидкости в скважины, активизирует больше разломов в массиве ( активизирует объем массива), чем это происходит в случае естественных землетрясений, очаги которых распределяются лишь по системе активных разломов, порождая нормальный наклон кривой повторяемости землетрясений.  [12]

Сначала рассматриваются непрерывные, случайные процессы. Их примерами в работе является локально однородная и изотропная турбулентность Колмогорова-Обухова, описанная в 1941 г. в основном соображениями подобия и размерности, частотный спектр морского волнения, полученный Захаровым в 1966 г., статистическая структура рельефа поверхности планеты. Затем 0 рассматривается статистика потока событий. Основной в работе формуле ( 4) дается теоретико-вероятностная интерпретация, с помощью которой объяснены многие эмпирические кумулятивные распределения частота - размер, типа закона Гутенберга-Рихтера для повторяемости землетрясений. С помощью практически важной простой формулы ( 13) оценивается скорость генерации энергии, высвобождаемой при событиях. С ее помощью для примера найдено, что скорость генерации энергии, высвобождаемой при землетрясениях, порядка 0 1 % от мощности полного геотермического потока.  [13]

Глава II посвящена результатам исследований различных волновых процессов в атмосфере. В главе III дается анализ динамики планетных атмосфер с использованием теории подобия. Результаты исследований по теории климата и его изменений представлены в главе IV. В этой главе, в том числе, отмечены экстремальные свойства климатической системы, проблемы ядерной зимы, моделирования уровня Каспия, сезонных вариаций температуры мезосферы, изменений состава атмосферы над Россией. Глава V посвящена исследованиям конвекции в мантии, в атмосфере Земли и в океане. Конвекция с учетом вращения изучается теоретически и в лабораторных экспериментах с приложениями к глубокой конвекции в океане, в жидком ядре Земли, для описания энергетических режимов ураганов. В главе VI проведен анализ статистики и энергетики разнообразных природных процессов и явлений. Приведены результаты исследований по общей теории статистики природных процессов и явлений как случайных блужданий в пространстве импульсов, позволяющие единым образом вывести их закономерности. Исследованы Колмогоровская турбулентность, морское волнение, закон повторяемости землетрясений. Особое место занимает глава VII, характеризующая широту интересов автора.  [14]

Нарушение условий равновесия внутренних слоев земли, происходящее в результате землетрясений, сопровождается возникновением упругих колебаний ( сейсмических волн) в горных породах. Место внутри земной коры, где произошло нарушение равновесия ее слоев, называется гипоцентром, или очагом землетрясения; точка же земной поверхности, ближайшая к гипоцентру, называется эпицентром. Гипоцентр и эпицентр землетрясения-не точки, но области, имеющие известное протяжение и весьма растянутые. От гипоцентра землетрясения расходятся во все стороны сейсмич. Наиболее сильные и разрушительные сотрясения наблюдаются в эпицентре. Они возникают только среди рыхлых отложений, амплитуда их весьма велика, скорость всего 4 м / ск, им не могут сопротивляться ни почва ни здания. Продолжительность и число сотрясений, а также промежутки между отдельными ударами, весьма разнообразны при каждом землетрясении. Повторяемость землетрясений, выражающаяся в частом проявлении их в какой-либо области, и наибольшая степень их напряженности определяют понятие сейсмичности страны. На карте земли можно выделить области сейсмичны е-потрясаемые часто и разрушительно, пенесейсмичные - потрясаемые часто и сильно и асейсмичны е - потрясаемые редко и слабо или вовсе не потрясаемые. Для обозначения силы землетрясений руководствуются интенсивностью разрушительных последствий их; в этом отношении почти во всеобщее употребление вошла шкала Росс и - Ф о р е л я, разделяющая землетрясения на 10 классов: от незаметных непосредственному наблюдению и обнаруживаемых лишь чувствительными сейсмографами микроеейс-мич. Шкала Росси-Фореля, давая очень подробные подразделения для слабых ударов, недостаточна для ударов более сильных. Поэтому в практике итальянских сейсмологов принята шкала Меркалли с 12 классами.  [15]



Страницы:      1    2