Итерационный подход - Большая Энциклопедия Нефти и Газа, статья, страница 1
Единственное, о чем я прошу - дайте мне шанс убедиться, что деньги не могут сделать меня счастливым. Законы Мерфи (еще...)

Итерационный подход

Cтраница 1


Итерационный подход применим и в более широком смысле, например, при построении интегрированной АСУ предприятием в целом.  [1]

Смысл подобного итерационного подхода к научно-технической проблеме создания АСУ заключается в том, что нахождение приближенных решений тех или иных задач осуществляется сравнительно быстро и не требует большого объема исследовании и материальных затрат. Вместе с тем знание приближенных решений позволяет существенно сузить круг претендентов на наилучшее решение задачи и проводить его поиск с помощью более строго обоснованных и, конечно, более трудоемких методов. Кроме того, знание приближенных решений позволяет во многих случаях начинать подготовительные работы к следующим этапам, не дожидаясь получения точных результатов.  [2]

Одним из простейших итерационных подходов является координатная верхняя релаксация. Идея заключается просто в минимизации р ( х ае; А, М) по всем а для каждого координатного вектора по очереди. Здесь х-текущий приближенный вектор, / - ая компонента которого изменяется. Каждый шаг требует два матрично-векторных умножения, и, что неизбежно, свойства сходимости оказываются не очень удовлетворительными.  [3]

Обычный аргумент в пользу этих простых итерационных подходов заключается в том, что они не требуют факторизации матриц и, следовательно, только они применимы к проблемам с огромными матрицами А и М, где факторизация представляется невозможной. Это рассуждение пренебрегает старой пословицей: Кто хочет, тот всегда найдет. Примеры, поставляемые инженерами-строителями, показывают, что нет пределов размерам матриц, которые могут быть факторизованы. Конечно, вторичная память интенсивно используется, когда п 5000, а надлежащее управление обменами между различными иерархиями памяти не легкая задача, к тому же она выходит за пределы этой книги.  [4]

В настоящее время в литературе имеется [23] сравнительно много результатов подсчета числа изомеров как с помощью теоремы Пойа, так и на основе итерационного подхода. Кроме подсчета на ЭВМ проводится также исчерпывающее конструирование возможных изомеров - см., например, процедуру [566] для ациклических структур, или программу [567] для генерации как циклических, так и ациклических изомеров.  [5]

При использовании простых примеров решения проблемы рецикла было проведено сравнение метода последовательных приближений и совместного расчета. Итерационный подход, использованный в PACER, дает возможность осуществлять линейное моделирование любых сложных задач.  [6]

Процесс конструирования включает выбор структуры мате риала. Итерационный подход заключается во все более глубоко ] изучении свойств материалов при выборе из все меньшего числ, предполагаемых структур. Конечным итогом этой операции яв ляется начало самой конструкторской работы. В отличие от ме таллов, композиционные материалы сами являются объекте.  [7]

Квантовостатистический вариант этой итерационной процедуры был введен в конце разд. Тачим образом, мы видим, что этот итерационный подход является вполне общим и может быть использован как в классических, так и квантовомеханических задачах, связанных с ролью экранирования.  [8]

9 Построение отношений. [9]

При наличии в ЭВМ требований к данным необходимо использовать итерационный подход, сопровождаемый контролем качества и печатью соответствующих документов ( гл.  [10]

В механике грунтов перспективным направлением развития является разработка и применение нелинейных моделей фунта. В частности, для этого широко используются численные методы расчета оснований фундаментов, которые посредством итерационного подхода моделируют работу основания с учетом образования зон пластических деформаций грунта. В итоге максимально используются прочностные и деформационные характеристики грунтов основания, что позволяет получить более рациональный вариант проекта фундамента. Однако при решении таких задач численными методами остается открытым вопрос об остановке цикла итераций и определении критической нагрузки на основание. Назначение числа максимальных итераций и суждение о потере устойчивости основания при превышении этого заранее заданного числа носит интуитивный характер и зависит от опыта проектировщика.  [11]

Затем следует рассчитать все размеры трубок и удовлетворить этим требованиям. Однако при этом, возможно, придется применить итерационный подход, поскольку температура газа на выходе нагревателя может быть неизвестной, а ее нужно задать, чтобы провести расчет термодинамических характеристик. После выполнения в описанном порядке всех расчетов находится расчетная величина Tg, которая используется затем в качестве нового исходного значения Те, и вся последовательность расчетов повторяется, пока не будет достигнута удовлетворительная сходимость решения. При этом; может потребоваться увеличение или уменьшение объема нагревателя. Можно проводить расчет в обратном порядке, определяя с помощью описанной методики температуру наружной поверхности стенки при заданной температуре на выходе нагревателя.  [12]

Одним словом, решение функционального уравнения - путь ко всевозможным благам; однако этим путем идти нелегко. Число функциональных уравнений рассматриваемого типа, - решение которых известно, очень мало по сравнению с числом функциональных уравнений, решение которых неизвестно. Стало почти аксиомой, что для точного решения функционального уравнения нужно либо чтобы само это уравнение было совсем простым, либо чтобы решающий был почти гением. Легко применим к функциональным уравнениям обычный итерационный подход, который мы проиллюстрируем для случая, когда Тс пусто.  [13]

Другая группа программ построения изображения, которые в основном выполняют ту же функцию, что и метод гибридного картографирования, но другим способом, обычно называется самокалибровкой. В данном случае комплексные коэффициенты усиления антенн рассматриваются как свободные параметры, получаемые явным образом наряду с интенсивностью. В некоторых случаях суть процесса легко описать. Например, при картографировании протяженного источника, содержащего компактный компонент ( что характерно для многих радиогалактик), протяженная структура разрешается с помощью более длинных баз, а компактный источник не затрагивается. Он может быть использован в качестве опорного источника, позволяющего найти для антенных пар с большими базами относительные фазы, но не абсолютную фазу, поскольку его положение не известно. Далее, если в решетке имеется достаточное количество длинных баз, то с их помощью могут быть получены коэффициенты усиления антенн. Такая особенность распределения интенсивности, однако, не принципиальна для метода, и с помощью итерационного подхода практически любой источник можно использовать в качестве опорного для самого себя.  [14]

Существует ряд фундаментальных вопросов, на которые может ответить только нелинейная теория. Например, приведут ли в конце концов нелинейные эффекты к остановке роста волны. Если предельная амплитуда существует, то как она достигается. Если диссипация существенна, то мы легко можем вообразить новое состояние, в котором волна с постоянной конечной амплитудой черпает энергию из среднего состояния со скоростью, обеспечивающей компенсацию диссипации волновой энергии и равной скорости притока энергии от внешнего источника к основному течению. В большинстве моделей неустойчивости, применяемых в океанологии и метеорологии, вязкость, однако, не учитывается, так что диссипация волн в них отсутствует. Поскольку недиссипатив-ные фииические процессы обратимы во времени, то возникает вопрос о том, какой должна быть эволюция амплитуды и структуры волны после достижения предельной амплитуды, если, конечно, таковая существует. Наконец, как на самом деле изменяется основное течение по мере развития волнового возмущения. Применение простого итерационного подхода, в котором неустойчивая волна используется для расчета изменений основного состояния, будет приводить к изменениям, растущим пропорционально exp ( 2tc -), что является следствием квадратичной природы нелинейности. Соответственно в любом таком прямом методе теории возмущений, использующем в качестве начального приближения найденное в линейной теории волновое возмущение, n - е приближение имеет порядок exp ( ntc), так что поправки достаточно высокого порядка очень быстро растут со временем, в силу чего такое описание нелинейных эффектов быстро становится непригодным.  [15]



Страницы:      1