Закономерность - подобие - Большая Энциклопедия Нефти и Газа, статья, страница 2
Жизненный опыт - это масса ценных знаний о том, как не надо себя вести в ситуациях, которые никогда больше не повторятся. Законы Мерфи (еще...)

Закономерность - подобие

Cтраница 2


Вероятностная природа усталостного разрушения, зависящего от дефектов структуры и поверхности металла, отражается на закономерностях подобия при этих разрушениях. С увеличением напрягаемых переменными напряжениями объемов увеличивается вероятность ослабления сопротивления металла разрушению более значительными дефектами и их сочетанием, уменьшается предел усталости, ослабляется рассеяние. Влияние абсолютных размеров на усталостные свойства металла возрастает с увеличением его неоднородности, особенно сильно проявляясь на литых и крупнозернистых структурах. С уменьшением вероятности разрушения влияние абсолютных размеров ослабевает, так как в соответствии со статистическими представлениями рассеяние уменьшается с увеличением напрягаемых объемов, и кривые усталости для низких вероятностей разрушения при различных размерах сечений сближаются. При сложных напряженных состояниях усталостные разрушения для металлов в вязком состоянии в основном определяются максимальными или октаэдрическими касательными напряжениями, как это следует, например, из данных исследования усталости конструкционных сталей. Большинство результатов укладывается между предельными шестиугольником касательных напряжений и эллипсом октаэдрических. Для металлов в хрупком состоянии разрушения определяются главными растягивающими нормальными напряжениями, они располагаются ближе к предельному квадрату предельных нормальных напряжений. Форма усталостного излома при кручении для вязких металлов свидетельствует о зарождении усталостного разрушения по направлению действия наибольших касательных напряжений. Для хрупких металлов трещина возникает сразу в направлении действия наибольших нормальных напряжений. Развитие трещины обычно следует поверхностям наибольших нормальных напряжений.  [16]

17 Кривые нормально - логарифмического распределения разрушающего числа циклов в зависимости.| Семейство кривых усталости по параметру вероятности разрушения Р для алюминиевых сплавов. [17]

Вероятностная природа усталостного разрушения, зависящего от дефектов структуры и поверхности металла, отражается на закономерностях подобия при этих разрушениях. С увеличением напрягаемых переменными напряжениями объемов увеличивается вероятность ослабления сопротивления металла разрушению более значительными дефектами и их сочетанием, уменьшается предел усталости, ослабляется рассеяние. Влияние абсолютных размеров на усталостные свойства металла возрастает с увеличением его неоднородности, особенно сильно проявляясь на литых и крупнозернистых структурах. С уменьшением вероятности разрушения влияние абсолютных размеров ослабевает, так как в соответствии со статистическими представлениями рассеяние уменьшается с увеличением напрягаемых объемов, и кривые усталости для низких вероятностей разрушения при различных размерах сечений сближаются. При сложных напряженных состояниях усталостные разрушения для металлов в вязком состоянии в основном определяются максимальными или октаэдрическими касательными напряжениями, как это следует, например, из данных исследования усталости конструкционных сталей. Большинство результатов укладывается между предельными шестиугольником касательных напряжений и эллипсом октаэдрических. Для металлов в хрупком состоянии разрушения определяются главными растягивающими нормальными напряжениями, они располагаются ближе к предельному квадрату предельных нормальных напряжений. Форма усталостного излома при кручении для вязких металлов свидетельствует о зарождении усталостного разрушения по направлению действия наибольших касательных напряжений. Для хрупких металлов трещина возникает сразу в направлении действия наибольших нормальных напряжений. Развитие трещины обычно следует поверхностям наибольших нормальных напряжений. Для усталостных разрушений имеет значение сочетание переменной и статической напряжен - 0 ности, характеризуемое асимметрией цикла, ко - - 20 эффициент которой является отношением ми - - го нимального и максимального напряжений Рис - 4 - Диаграмма цикла, взятых алгебраи - % жий г и симмет-чески.  [18]

19 Семейство кривых усталости по параметру вероятности разрушения Р для алюминиевых сплавов. [19]

Вероятностная природа усталостного разрушения, зависящего от дефектов структуры и поверхности металла, отражается на закономерностях подобия при этих разрушениях. С увеличением напрягаемых переменными напряжениями объемов увеличивается вероятность ослабления сопротивления металла разрушению более значительными дефектами и их сочетанием, уменьшается предел усталости, ослабляется рассеяние. Влияние абсолютных размеров на усталостные свойства металла возрастает с увеличением его неоднородности, особенно сильно проявляясь на литых и крупнозернистых структурах. С уменьшением вероятности разрушения влияние абсолютных размеров ослабевает, так как в соответствии со статистическими представлениями рассеяние уменьшается с увеличением напрягаемых объемов, и кривые усталости для низких вероятностей разрушения при различных размерах сечений сближаются. При сложных напряженных состояниях усталостные разрушения для металлов в вязком состоянии в основном определяются максимальными или октаэдрическими касательными напряжениями, как это следует, например, из данных исследования усталости конструкционных сталей. Большинство результатов укладывается между предельными шестиугольником касательных напряжений и эллипсом октаэдрических. Для металлов в хрупком состоянии разрушения определяются главными растягивающими нормальными напряжениями, они располагаются ближе к предельному квадрату предельных нормальных напряжений. Форма усталостного излома при кручении для вязких металлов свидетельствует о зарождении усталостного разрушения по направлению действия наибольших касательных напряжений. Для хрупких металлов трещина возникает сразу в направлении действия наибольших нормальных напряжений. Развитие трещины обычно следует поверхностям наибольших нормальных напряжений.  [20]

Не углубляясь в теорию термодинамического подобия, рассмотрим здесь, имея в виду последующие приложения, два вопроса: во-первых, при каких обстоятельствах признаки и закономерности подобия ( в отношении термических свойств), установленные применительно к гомогенным телам, могут быть распространены на двухфазные среды и, во-вторых, каковы предпосылки подобного между собой протекания термодинамических процессов с влажными парами различных веществ. Выяснение этих вопросов связано с задачами моделирования двухфазных потоков и определением условий универсальности некоторых характеристик процесса течения влажных пароь сходственных веществ.  [21]

Определение несущей способности элементов машин и конструкций основывается, с одной стороны, на информации о действительной нагружен-ности, распределении внутренних усилий и напряжений и, с другой, на критериях сопротивления разрушению в связи с видом и режимом напряженного состояния, условиями нагрева или охлаждения, а также закономерностями подобия.  [22]

При нормальном распределении величин crmax получается пересечение соответствующих линий на нормальной вероятностной бумаге при достаточно малых вероятностях разрушения, что противоречит представлениям о влиянии масштабного фактора. Поэтому при анализе закономерностей подобия усталостного разрушения целесообразно пользоваться нормальным распределением величины X lg ( crmax - а), которому не свойственны указанные особенности. Однако указанные соображения против использования нормального распределения trmax несущественны. С другой стороны, это распределение весьма удобно при практических расчетах на прочность. Поэтому в дальнейшем с целью упрощения расчетов нормальное распределение величины X lg ( amax - и) будет аппроксимировано нормальным распределением величины сгшах.  [23]

В указанных пределах сопротивление усталости увеличивается с уменьшением радиуса, но только до тех пор, пока разрушение не переходит из подступичной части в зону галтели. При дальнейшем уменьшении радиуса предел выносливости падает в соответствии с закономерностями подобия, описанными выше.  [24]

Практикой установлено, что применяют главным образом две длины корпуса на диаметр и только когда для данного диаметра получаются недопустимо длинные сердечники у машин второй длины, принимают одну длину, а при больших мощностях - три-четыре длины. При применении больше одной длины корпуса на диаметр закономерности подобия машин дополнительно нарушаются, однако в данном случае более важными являются технологические соображения: унифицируются узлы и детали и облегчаются условия производства.  [25]

В главах 4 - 9 изложены вопросы прочности стеклопластиков. Обобщены результаты исследования прочности армирующих волокон и напряженности компонентов в регулярных структурах стеклопластиков. Статическая прочность рассмотрена па основе статистических представлений о прогрессирующем разрушении неоднородных по прочности волокон. Охарактеризованы закономерности подобия при разрушении стеклопластиков для однородного напряженного состояния и в зонах концентрации напряжений. Экспериментальные данные приведены для модели разрушения стеклопластиков и статистической оценки их параметров. Они использованы для обоснования допускаемых напряжений и оценки вероятности разрушения.  [26]

Экспериментальные исследования, по результатам которых могут быть проверены уравнения подобия усталостного разрушения, делят на две группы. Функция распределения предела выносливости и характеристики рассеяния [ например, S в формуле (3.56) ], в этом случае найдены быть не могут. По этим данным закономерности подобия могут быть проверены только по средним значениям [ при ир.  [27]



Страницы:      1    2