Правило - преобразование - Большая Энциклопедия Нефти и Газа, статья, страница 2
Думаю, не ошибусь, если промолчу. Законы Мерфи (еще...)

Правило - преобразование

Cтраница 2


При выполнении правила преобразования (5.4) замены (5.5) конформно инвариантны.  [16]

Действуя согласно правилам преобразования компонент тензора напряжений и тензора скоростей деформации, можно представить закон пространственного деформирования вязкопластической среды в произвольной системе координат и получить полную систему уравнений для решения задач пространственного течения.  [17]

Знакомство с правилами преобразования для величин сродства и скоростей весьма важно, так как разные авторы, изучая один и тот же необратимый процесс, часто использовали различные эквивалентные системы, и поэтому одинаковость полученных ими результатов не сразу становится очевидной. Так, например, набор величин X и X имеет преимущество перед набором X и Х в том отношении, что величины X и Х имеют определенные численные значения, в то время как величины Xj, содержащие еще h7 [ см. уравнения (4.19) и (4.21) ], как это видно из уравнения (2.16), включают аддитивную постоянную.  [18]

Эта формула определяет правило преобразования частных производных от скаляра при переходе от одних координат к другим.  [19]

Этот пример подсказывает правило преобразования / n - арных предикатов ( с m аргументами) в эквивалентное произведение бинарных предикатов.  [20]

Поэтому нужно определить правило преобразования волновой функции при обращении времени.  [21]

Представляет интерес получить правило преобразования оператора координаты Q как следствие этого коммутационного соотношения.  [22]

Излагаемые в алгебре правила преобразования радикалов безоговорочно верны только для арифметических корней.  [23]

Для анализа устойчивости выведите правила преобразований олок-схемы коррелятора, представляющего собой множительное устройство, полезный выходной сигнал которого равен среднему значению произведения двух сигналов, каждый из которых содержит общие частоты.  [24]

Найденный нами псевдоскаляр подчиняется правилу преобразования, которое обратно правилу преобразования для псевдоскаляра типа емкости. Его называют скалярной плотностью.  [25]

Продукция 1) является правилом преобразования строки, имеющим левую часть, являющуюся образцом для распознавания преобразуемой подстроки, и правую часть, содержащую замену для части строки, соответствующей образцу.  [26]

Как и следовало ожидать, правило преобразования деревьев, соответствующее этой аксиоме, оказывается несколько сложнее предыдущих.  [27]

Теперь мы рассмотрим симплектические аналоги правила преобразования (1.5.20) - (1.5.21) н формулы произведения (1.4.6) - (1.4.7) для ортогонального случая. Большая часть формул получается посредством замены К, Н, J и det на - К, J Hs det - l соответственно в ортогональной версии.  [28]

Заметим, что в силу ковекторного правила преобразования свойство обобщенной потенциальности ( простой потенциальности) не зависит от выбора переменных и сохраняется после наложения связей. Обобщенный потенциал определен с точностью до прибавления полной производной df ( q, t) / dt и выдерживает любые замены переменных.  [29]

При свертывании блок-схемы, пользуются правилами преобразования.  [30]



Страницы:      1    2    3    4