Cтраница 1
Прогнозирование индивидуального остаточного ресурса относится к конкретному находящемуся в эксплуатации техническому объекту. Основой для прогнозирования служит информация, которую условно можно разделить на три части. [1]
Методология прогнозирования индивидуального остаточного ресурса и других индивидуальных показателей надежности в принципе не отличается от методологии прогнозирования на стадии проектирования. Самое существенное различие состоит в том, что в дополнение к априорной информации о материалах, узлах, нагрузках следует использовать текущую информацию об объекте, полученную в результате наблюдений и измерений во время эксплуатации. На основании совокупности информации об объекте необходимо экстраполировать поведение объекта в будущем и установить оптимальный момент для прекращения эксплуатации данного объекта и ( или) проведения следующей инспекции, если контроль состояния не ведут непрерывно. [2]
Проблема прогнозирования индивидуального остаточного ресурса любой технической системы может быть решена только в рамках системного подхода. Рассмотрим структуру и содержание основных задач, требующих решения в рамках проблемы прогнозирования ИОР технических систем. [3]
Вторую группу объектов, для которых проблема прогнозирования индивидуального остаточного ресурса стала актуальной, составляют крупные энергетические установки. Будучи сложными и ответственными техническими объектами, они содержат напряженные узлы и агрегаты, которые при аварии могут стать источником повышенной опасности для людей и окружающей среды. Ряд тепловых электростанций, построенных в послевоенные годы, был рассчитан на срок службы 25 - 30 лет. [4]
Важная роль в обеспечении безопасности технических объектов принадлежит системе прогнозирования индивидуального остаточного ресурса. Эта система позволяет непрерывно следить за техническим состоянием каждого конкретного объекта и выдавать рекомендации о дальнейшей эксплуатации объекта. В частности, если результаты обработки диагностических данных показывают, что объект приближается к аварийной ситуации, должно быть принято решение о прекращении его эксплуатации или о переходе на облегченный режим с одновременным принятием мер, обеспечивающих безопасность людей и окружающей среды. [5]
Важная роль в обеспечении безопасности технических объектов принадлежит системе прогнозирования индивидуального остаточного ресурса. Эта система позволяет непрерывно следить за техническим состоянием каждого конкретного объекта и действующими на него нагрузками и выдавать рекомендации о дальнейшей эксплуатации объекта. В частности, если результаты обработки диагностических данных показывают, что объект приближается к аварийной ситуации, должно быть принято решение о прекращении его эксплуатации или о переходе на облегченный режим с одновременным принятием мер, обеспечивающих безопасность людей и окружающей среды. [6]
Прогнозирование индивидуального остаточного ресурса выполняется для конкретного находящегося в эксплуатации оборудования. [7]
Прогнозирование индивидуального остаточного ресурса относится к конкретному находящемуся в эксплуатации техническому объекту. Основой для прогнозирования служит информация, которую условно можно разделить на три части. [8]
Примером служат данные о случайных вибрационных нагрузках или о циклической прочности деталей и соединений. Для прогнозирования индивидуального остаточного ресурса необходимо знать реализации этих величин для данного объекта. Вместо этого мы имеем априорные распределения и другие априорные вероятностные характеристики, относящиеся ко всему ансамблю ( возможно, только мыслимому) аналогичных объектов, работающих в аналогичных условиях. Некоторая информация, пригодная для оценки параметров данной конкретной системы и параметров ее состояния, содержится в результатах наблюдений w ( 7Л) над объектом в процессе функционирования. Извлечение этой информации составляет задачу идентификации. [9]
Эксплуатация машин и сооружений по индивидуальному техническому состоянию открывает дополнительные резервы для повышения ресурса и показателей безопасности. Методология прогнозирования индивидуального остаточного ресурса и других индивидуальных показателей надежности в принципе не отличается от методологии прогнозирования на стадии проектирования. Самое существенное различие состоит в том, что в дополнение к априорной информации о материалах, узлах, нагрузках следует использовать текущую информацию об объекте, полученную в результате наблюдений и измерений во время эксплуатации. На основании совокупности информации об объекте необходимо экстраполировать поведение объекта в будущем и установить оптимальный момент для прекращения эксплуатации данного объекта и ( или) проведения следующей инспекции, если контроль состояния не ведут непрерывно. [10]
Описанную схему можно сравнительно легко осуществить, если все параметры системы, а также все необходимые вероятностные характеристики случайных процессов, входящих в уравнения (7.1) и (7.2), заданы. Однако обычно лишь часть этих параметров задана априорными распределениями. Примером служат данные о случайных вибрационных нагрузках или о циклической прочности деталей и соединений. Для прогнозирования индивидуального остаточного ресурса необходимо знать реализации этих величин для данного объекта. Вместо этого мы имеем априорные распределения и другие априорные вероятностные характеристики, относящиеся ко всему ансамблю ( возможно, только мыслимому) аналогичных объектов, работающих в аналогичных условиях. Некоторая информация, пригодная для оценки параметров данной конкретной системы и параметров ее состояния, содержится в результатах наблюдений w ( Th) над объектом в процессе функционирования. Извлечение этой информации составляет задачу идентификации. [11]
В книге дано систематическое изложение теории долговечности машин и конструкций. Предложены общие модели накопления повреждений и распространения трещин в деталях машин и элементах конструкций. Центральное место занимает проблема прогнозирования ресурса и срока службы иа основании информации о материалах, узлах, деталях, а также о нагрузках и воздействиях. Развиты методы прогнозирования показателей долговечности на стадии проектирования, а также методы прогнозирования индивидуального остаточного ресурса. Обсуждена проблема нормирования и оптимизации назначенных показателей долговечности. [12]
Пусть свойства объекта заданы с точностью до вектора прочности г, компоненты которого характеризуют не только механическую прочность, но и способность объекта сопротивляться другим внешним воздействиям. Для каждого конкретного объекта вектор прочности принимает определенные численные значения, характеризующие начальные свойства объекта. Для генеральной совокупности объектов вектор г случайный. На стадии проектирования распределение вектора г считаем заданным. На стадии эксплуатации его значения в принципе должны быть известны. Однако из-за того, что средства диагностики несовершенны, а значительная часть диагностической информации носит косвенный характер, и здесь остается элемент неопределенности. При прогнозировании индивидуального остаточного ресурса также целесообразно считать г случайным вектором, заменив априорные распределения его значений соответствующим апостериорным распределением. [13]