Cтраница 1
Целочисленное программирование ориентировано на решение задач, в которых все или некоторые переменные должны принимать только целые значения. Задача называется полностью целочисленной, если условие целочисленности наложено на все ее переменные; когда это условие относится лишь к некоторым переменным, задача называется частично целочисленной. [1]
Целочисленное программирование исторически выросло из непрерывного линейного программирования, сразу начало использовать его идеи, аппарат и методы. [2]
Целочисленное программирование ориентировано на решение задач математического программирования, в которых все или некоторые переменные должны принимать только целочисленные значения. Задача называется полностью целочисленной, если условие целочисленности наложено на все ее переменные; когда это условие относится лишь к некоторым переменным, задача называется частично целочисленной. [3]
Методы целочисленного программирования, известные - в настоящее время, позволяют решать довольно ограниченный круг задач в связи с тем, что для реальных задач необходимо проделывать очень большой объем вычислений. Актуальность и трудность проблематики делают целочисленное программирование одним из перспективных и интересных направлений в математическом программировании. [4]
Присущие целочисленному программированию трудности вычислительного характера обусловили стремление исследователей найти альтернативные пути решения проблемы. Один из простейших подходов заключается в решении непрерывной модификации целочисленной задачи с последующим округлением координат полученного оптимума до допустимых целых значений. Округление в данном случае есть не что иное, как приближение. [5]
Среди задач целочисленного программирования наибольший интерес представляют задачи комбинаторного типа, в которых экстремальное решение описывается некоторой перестановкой набора чисел. Для их решения применяются методы, использующие принципы направленного перебора вариантов. Оптимальное решение получается в результате перебора сокращенного числа допустимых решений. С помощью определенного правила исключаются целые подмножества вариантов, не содержащие оптимальной точки. [6]
Постройте модель целочисленного программирования для определения того, в каких из п массивов производить поиск, чтобы выбрать данные, относящиеся ко всем требуемым статистическим характеристикам, за минимальное время. [7]
Постройте модель целочисленного программирования для определения такого назначения автомашин для доставки всех грузов, при котором минимизируются суммарные затраты. [8]
Рассмотрим модель целочисленного программирования, содержащую только булевы переменные. [9]
К задачам целочисленного программирования относятся, например, задача об оптимальном раскрое материалов, так как ее параметры управления задаются в целых единицах ( листах фанеры, стекла, стали), задача об оптимальном распределении самолетов по различным маршрутам авиалиний, известные задачи о рюкзаке и коммивояжере. [10]
Именно алгоритмы целочисленного программирования, которые будут описаны ниже, реализуют методы систематического введения дополнительных ограничений с целью сведения исходной допустимой области к выпуклой оболочке ее допустимых целочисленных точек. [11]
Вначале задача целочисленного программирования рассматривается как линейная программа и алгоритм решает ее с помощью прямого или двойственного симплекс-метода. [12]
Многие задачи целочисленного программирования могут быть представлены в такой форме. В частности, иногда можно представить в такой форме задачу, в которой целевая функция является квадратичной положительной полуопределенной функцией, а ограничения линейны. [13]
Рассмотрим задачу целочисленного программирования, к которой сводятся многие задачи автоматизации проектирования ( см. гл. [14]
Классические методы целочисленного программирования позволяют в результате оптимизационных расчетов получать решения ( определять искомые объемы производства), точно соответствующие типовым мощностям. В этих условиях производство либо входит в оптимальный план с объемом, равным мощности, либо не входит вообще. [15]