Производство - цирконий - Большая Энциклопедия Нефти и Газа, статья, страница 3
Если вы поможете другу в беде, он непременно вспомнит о вас, когда опять попадет в беду. Законы Мерфи (еще...)

Производство - цирконий

Cтраница 3


За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, наУльбинском металлургическом заводе ( Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту [7]; на Приднепровском химическом заводе ( Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов ( Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного ( по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.  [31]

За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, на Ульбинском металлургическом заводе ( Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту [7]; на Приднепровском химическом заводе ( Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов ( Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного ( по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.  [32]

Рассеянные редкие металлы объединены по признаку рассеяния их в земной коре. Обычно рассеянные элементы находятся в виде изоморфной примеси в решетках других минералов и извлекаются попутно из отходов металлургич. Ga - из отходов алюминиевого производства, In - из отходов производства цинка и свинца, Т1 - из пылей обжига различных сульфидных концентратов, Ge - из от-ходов цинкового и медного производств, а также отходов переработки углей, Re - из полупродуктов молибденового производства, Ш извлекают попутно в производстве циркония. Рассеянные элементы Se и Те, встречающиеся как примеси в различных природных сульфидах, извлекаются либо из отходов сернокислотного производства, либо при металлургич.  [33]

Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж:; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.  [34]

Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Последующая технология включает электронно-лучевой аффинаж. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.  [35]

Цирконий соответственно строению электронной оболочки и, следовательно, своему месту в периодической системе элементов Д. И. Менделеева является аналогом титана в физико-химическом отношении. Для металла циркония это выражается в подобии его титану в отношении физических, механических, технологических, коррозионных свойств и характера образуемых сплавов. Поэтому в последние 15 - 20 лет происходит широкое освоение циркония: разработка методов получения и осуществление производства циркония высокой чистоты, детальное исследование его свойств и сплавов.  [36]

Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg xCj при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики ( карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.  [37]

Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики ( карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.  [38]



Страницы:      1    2    3