Марковский процесс - Большая Энциклопедия Нефти и Газа, статья, страница 1
Настоящий менеджер - это такой, который если уж послал тебя... к чертовой бабушке, то обязательно проследит, чтобы ты добрался по назначению. Законы Мерфи (еще...)

Марковский процесс

Cтраница 1


Марковский процесс принято считать непрерывным, если К.  [1]

Марковский процесс как раз и является вероятностной моделью для подобного типа процессов.  [2]

Марковский процесс, если предельное распределение вероятностей состояний я - не зависит от начальных условий и если из каждого его состояния можно попасть в любое другое состояние, называется эргодическим, а соответствующая матрица - эргодической.  [3]

Марковский процесс является С.  [4]

Марковские процессы играют чрезвычайно важную роль в различных приложениях. Хотя эти процессы представляют собой весьма специальный класс случайных процессов, значение их для теории надежности, особенно для решения задач прогнозирования характеристик надежности, очень велико. С точки зрения определения характеристик надежности оборудования сложных технологических систем в процессе эксплуатации и прогнозирования остаточного ресурса наибольший интерес представляют процессы Маркова с непрерывным временем. Поэтому в данном параграфе будут рассмотрены в основном марковские процессы с непрерывным временем.  [5]

6 Структура системы с перекрестными связями.| Структура системы со сложными связями. [6]

Марковский процесс - процесс, у которого для каждого момента времени вероятность любого состояния системы в будущем зависит только от ее состояния в настоящий момент времени и не зависит от того, каким образом система пришла в это состояние. С его помощью изображаются процессы перехода системы из одного состояния в другое в случайные моменты времени.  [7]

Марковские процессы представляют специальный тип случайных процессов, характеризующихся тем, что вероятностная зависимость между состояниями процесса распространяется только на близкие состояния и не проявляется между достаточно далекими состояниями. Эту особенность называют свойством отсутствия последействия, так как для предсказания вероятностного характера процесса в будущем достаточно знать состояние процесса в настоящий момент. Марковская цепь является частным случаем марковских процессов со счетным числом состояний.  [8]

Марковский процесс полностью определяется двумя функциями Л ( / ь ti) и Л Л / 2 t yi, ti - По этим двум функциям можно восстановить всю иерархию.  [9]

Марковский процесс с факторизованной матрицей перехода ( У У и ( У) v ( у) ( для У т У) называют процессом кенгуру.  [10]

Марковские процессы и полугруппы операторов, Теория вероятн.  [11]

Марковские процессы ( процессы без последействия), для них многоточечные вероятности выражаются через одномерные плотности распределения и двухточечные плотности вероятности перехода.  [12]

Марковский процесс ( слова с конечным или счетным множеством состояний внутри данной главы будем опускать там, где это не может вызвать недоразумения) задается множеством состояний Z, которое должно быть конечным или счетным, начальным распределением [ Pk ( to), k 6 Z ] и набором интенсивностей перехода Я / ( t), i 6 Z, I 6 Z, i I ( более полно: интенсивность перехода из i в / в момент t), представляющих собой любые неотрицательные, интегрируемые по Лебегу в любом конечном интервале функции.  [13]

Марковские процессы с непрерывным параметром изучаются в гл.  [14]

Марковский процесс, сосредоточенный на 0, оо, определяется следующим образом.  [15]



Страницы:      1    2    3    4