Тепловой диффузионный процесс - Большая Энциклопедия Нефти и Газа, статья, страница 3
Молоко вдвойне смешней, если после огурцов. Законы Мерфи (еще...)

Тепловой диффузионный процесс

Cтраница 3


Решение, однако, получается очень сложным; в настоящее время теория подобия химических реакций еще недостаточно разработана для того, чтобы можно было получить обобщающие зависимости в форме, аналогичной зависимостям в гидромеханических, тепловых и диффузионных процессах. К - Дьяконова, так и ряда других исследователей.  [31]

По этому вопросу имеется теоретическая работа Марбла и Адамсона [3], которые использовали теорию пограничного слоя для анализа зажигания и формирования фронта ламинарного пламени в ламинарной зоне смешения, образующейся между параллельными потоками горючего газа и продуктов сгорания. В этом анализе учитываются тепловые и диффузионные процессы. Результаты анализа показывают, что расстояние, необходимое для зажигания, является экспоненциальной функцией температуры горячего потока.  [32]

Эффективность перемешивания является характеристикой качества процесса, которое оценивают в зависимости от технологического назначения перемешивания. При перемешивании для интенсификации химических реакций, тепловых и диффузионных процессов эффективность оценивают отношением коэффициентов скорости процессов, проводимых с перемешиванием и без перемешивания. Эффективность процессов получения суспензий и эмульсий характеризуется достигаемой степенью однородности единицы перемешиваемого объема жидкости и в каждом конкретном случае определяется целесообразной интенсивностью, требующей минимальных расходов энергии и времени на проведение процесса. Из двух аппаратов с мешалками более эффективно работает тот, в котором определенный технологический процесс достигается при более низкой затрате энергии.  [33]

Эффективность перемешивания является характеристикой каче - СТЕ. При перемешивании для интенсификации химических реакций, тепловых и диффузионных процессов эффективность оценивают отношением коэффициентов скорости процессов, проводимых с перемешиванием и без перемешивания. Эффективность процессов получения суспензий и эмульсий характеризуется достигаемой степенью однородности единицы перемешиваемого объема жидкости и в каждом конкретном случае определяется целесообразной интенсивностью, требующей минимальных расходов энергии и времени на проведение процесса. Из двух аппаратов с мешалками более эффективно работает тот, в котором определенный технологический процесс достигается при более низкой затрате энергии.  [34]

Эффективность перемешивания является характеристикой качества процесса, которое оценивают в зависимости от технологического назначения перемешивания. При перемешивании для интенсификации химических реакций, тепловых и диффузионных процессов эффективность оценивают отношением коэффициентов скорости процессов, проводимых с перемешиванием и без перемешивания. Эффективность процессов получения суспензий н эмульсий характеризуется достигаемой степенью однородности единицы перемешиваемого объема жидкости и в каждом конкретном случае определяется целесообразной интенсивностью, требующей минимальных расходов энергии и времени на проведение процесса. Из двух аппаратов с мешалками более эффективно работает тот, в котором определенный технологический процесс достигается при более низкой затрате энергии.  [35]

Уравнение (V.19) с формальной точки зрения представляет собой упрощенный вариант уравнений переноса примеси (V.13) - (V.14) и потому может быть исследовано в рамках общей с ними теории. До тех пор, пока поле скоростей фильтрации считается известным, а тепловые и диффузионные процессы не связанными между собой, можно рассматривать гидродинамическую картину, массоперенос и теплоперенос последовательно и независимо друг от друга.  [36]

Эффективность перемешивающего устройства характеризует качество проведения процесса перемешивания и может быть выражена по-разному в зависимости от цели перемешивания. Например, в процессах получения суспензий эффективность перемешивания характеризуется степенью равномерности распределения твердой фазы в объеме аппарата; при интенсификации тепловых и диффузионных процессов - - отношением коэффициентов тепло - или массоотдачи при перемешивании и без него. Эффективность перемешивания зависит не только от конструкции перемешивающего устройства и аппарата, но и от величины энергии, вводимой в перемешиваемую жидкость.  [37]

Эффективность перемешивающего устройства характеризует качество проведения процесса перемешивания и может быть выражена по-разному в зависимости от цели перемешивания. Например, в процессах получения суспензий эффективность перемешивания характеризуется степенью равномерности распределения твердой фазы в объеме аппарата; при интенсификации тепловых и диффузионных процессов - отношением коэффициентов тепло - или массоотдачи при перемешивании и без него. Эффективность перемешивания зависит не только от конструкции перемешивающего устройства и аппарата, но и от величины энергии, вводимой в перемешиваемую жидкость.  [38]

В некоторых случаях жидкие отходы представляют собой какой-либо основной продукт, загрязненный небольшим количеством примесей. К таким отходам относятся отработанные масла или органические теплоносители, загрязненные продуктами окисления, полимеризации и механическими примесями. Для их переработки в первую очередь целесообразно использовать гидромеханические, тепловые и диффузионные процессы разделения.  [39]

40 Определение минимума затрат на проведение процесса выпаривания. [40]

Наиболее целесообразными мерами предотвращения вредного влияния роста концентраций и температурной депрессии могут быть либо периодическое проведение процесса, либо проведение процесса выпаривания в аппарате полного вытеснения. Последний прием надлежит рассматривать в качестве радикального. Промежуточным решением может быть разделение каждого корпуса на ряд ступеней ( секционирование), что препятствует вредному влиянию факторов, уменьшающих движущую силу тепловых и диффузионных процессов.  [41]

Метод описания ФХС, который будет изложен в настоящей главе, является в некотором смысле противоположным тому формальному подходу, который обсуждался выше. Здесь исходным моментом решения задачи служит внутренняя структура системы. Поведение ФХС представляется как следствие ее внутренних физико-химических процессов и явлений, для описания которых привлекаются фундаментальные законы термодинамики и механики сплошной среды. В главе будут рассмотрены характерные схемы реализации этого подхода на примерах сложных физико-химических систем, построение адекватных математических описаний которых обычно вызывает затруднения. В частности, будут сформулированы принципы построения математической модели химических, тепловых и диффузионных процессов, протекающих в полидисперсных ФХС ( на примере гетерофазной полимеризации); будет изложен метод построения кинетической модели псев-доожиженного ( кипящего) слоя; будет рассмотрен один из подходов к расчету поля скоростей движения смеси газа с твердыми частицами в аппарате фонтанирующего слоя сложной конфигурации; на основе модели взаимопроникающих континуумов будет исследован процесс смешения высокодисперсных материалов с вязкими жидкостями в центробежных ( ротационных) смесителях.  [42]



Страницы:      1    2    3