Cтраница 1
Взаимное расположение векторов не изменяется, так как оба они вращаются с одной и той же угловой скоростью со - угловая частота обеих синусоидальных функций одинакова. [1]
Взаимное расположение векторов на векторной диаграмме с течением времени не изменяется, поэтому нет необходимости вращать векторы при изображении синусоидально изменяющихся величин на комплексной плоскости, достаточно изобразить векторы в начальный момент времени, представить их комплексами. [2]
Взаимное расположение векторов напряжения UAX и U ах в этом случае аналогично расположению стрелок часов, показывающих 6 часов. [3]
Поскольку взаимное расположение векторов t -, v, b не изменяется, соответствующее движение естественного трехгранника можно рассматривать как движение твердого тела: поступательное перемещение вместе с точкой М и вращение относительно этой точки с угловой скоростью И. Вектор Q называется вектором Дарбу. [4]
В этом случае взаимное расположение векторов ti, t2, n не изменяется, и образуемый ими триедр поворачивается при переходе от точки к точке как жесткое целое. [5]
В этом случае взаимное расположение векторов tj, t2, n не изменяется, и образуемый ими триедр поворачивается при переходе от точки к точке как жесткое целое. [6]
Ясно, что взаимное расположение векторов на диаграмме при этом не изменилось. [7]
На векторной диаграмме важно взаимное расположение векторов, неизменное для величин, изменяющихся с одной и той же частотой. Поэтому изображение векторов величин, изменяющихся с различной частотой, на одной и той же векторной диаграмме недопустимо, так как взаимное расположение таких векторов будет различным для разных моментов времени. [8]
Важным частным случаем взаимного расположения векторов является тот, когда они взаимно перпендикулярны. Перпендикулярные векторы называются также ортогональными. Если нам дан некоторый набор векторов, в котором любые два вектора ортогональны друг другу, то этот набор называется ортогональной системой векторов. [9]
На рисунке 3.5. показано взаимное расположение векторов пары и ее момента. Момент пары есть свободный вектор, так как он представляет собой скорость поступательного движения тела и может быть отнесен к любой его точке. [10]
Направление силы Лоренца для положительно ( а и отрицательно ( б. [11] |
На рис. 2.1 показаны взаимные расположения векторов скорости движения частицы v, магнитной индукции В и силы Лоренца Гл для положительно и отрицательно заряженных частиц. [12]
Что можно сказать о взаимном расположении вектора и оси, если при изменении направления вектора на противоположное проекция этого вектора на ось не изменяется. [13]
В § 8 - 3 отмечено, что взаимное расположение векторов на векторной диаграмме с течением времени не изменяется; поэтому нет необходимости вращать векторы при изображении синусоидально изменяющихся величин на комплексной плоскости. [14]
В § 9 - 3 отмечено, что взаимное расположение векторов на векторной диаграмме с течением времени не изменяется; поэтому нет необходимости вращать векторы при изображении синусоидально изменяющихся величин на комплексной плоскости. [15]