Cтраница 4
Нейронная сеть с временной задержкой. [46] |
Поскольку - рекуррентные связи отсутствуют, такая сеть может быть обучена при помощи стандартного алгоритма обратного распространения ошибки или какого-то из его многочисленных вариантов. Сети такой конструкции успешно применялись в задачах распознавания речи, предсказания нелинейных временных рядов и нахождения закономерностей в хаосе. [47]
Поскольку обсуждаемая нами структура представляет собой многослойную сеть и, как уже отмечалось, алгоритм обратного распространения ошибки можно обобщить на любую сеть с прямым распространением сигнала, то ничто не препятствует тому, чтобы предлагаемый модуль нечеткого управления обучать также, как и обычную нейронную сеть. [48]
Представленные зависимости (5.18), (5.21) и (5.22) определяют способ модификации весов и параметров на основе алгоритма обратного распространения ошибки. [49]
Реализована только одна нейронная парадигма - многослойная нейронная сеть и только один алгоритм ее обучения - метод обратного распространения ошибки. Лишний балл добавлен за большое количество параметров настройки алгоритма обучения. [50]
Гибридная нейронная сеть формально по структуре идентична многослойной нейронной сети с обучением, например, по алгоритму обратного распространения ошибки, но скрытые слои в ней соответствуют этапам функционирования нечеткой системы. [51]
Уильямса [75], в которой был предложен алгоритм обучения многослойных сетей перцептронного типа, получивший название метод обратного распространения ошибки. [52]
Из выражения (2.139) удаляется значение ошибки прогнозирования ( невязки), затем отдельно для каждого выхода применяется метод обратного распространения ошибки. [53]
Если говорить об обучении сети ( шаг 2), то наиболее часто встречается развитие топологии однонаправленных сетей с применением алгоритма обратного распространения ошибки с целью локального обучения. [54]
По умолчанию устанавливается алгоритм Online Backprop - алгоритм обучения по методу обратного распространения ошибки в режиме реального времени - модификация алгоритма обучения по методу обратного распространения ошибки, когда веса и смещения сети корректируются после предъявления каждого нового образа ( вектора) обучающей выборки. [55]
В большинстве имеющихся нейронно-сетевых пакетов реализованы методы пакетной обработки, импульса, изменения величины шага, и даже более совершенные варианты алгоритмов типа алгоритма обратного распространения ошибки и квази-ньютоновские методы. В литературе описано много других алгоритмов, реализующих иные подходы к задаче оптимизации. Так, в основанном на идеях статистической физики методе замораживания стабилизация алгоритма осуществляется за счет понижения температурного параметра. Наконец, в последнее время пользуются успехом так называемые генетические алгоритмы, в которых набор весов рассматривается как индивид, подверженный мутациям и скрещиванию, а в качестве показателя его качества берется критерий ошибки. По мере того, как нарождаются новые поколения, все более вероятным становится появление оптимального индивида. [56]