Cтраница 2
Эта операция слегка снижает растворимость фосфора удобрения в воде, но не влияет на его цит-ратную растворимость. [16]
II. Маска для локальной диффузии и краевые эффекты при диффузии через окна в маске.| Влияние процесса окисления кремния на перераспределение некоторых примесей в кремнии. [17] |
Это распределение зависит от соотношения значений растворимости данной примеси в окисле и кремнии. Например, как показано на рис. 7 - 12, растворимость фосфора в кремнии больше, чем в окисле. Это приводит к обогащению фосфором прилегающего к окислу слоя кремния. [18]
Представленные на рис. 24 данные по влиянию легирующих элементов на растворимость фосфора в а-железе показывают, что легирование железа, содержащего фосфор, может приводить к нескольким конкурирующим процессам. К ним относятся усиление зернограничной сегрегации фосфора при умеренном снижении его растворимости в железе, с одной стороны, и ослабление сегрегации из-за связывания растворенного фосфора при выделении фосфидов в результате очень сильного снижения растворимости фосфора с другой. В ряде работ показано И09, 241 ], что в случае низколегированных конструкционных сталей весьма эффективными добавками, связывающими охрупчивающие примеси в химические соединения и значительно ослабляющими склонность к отпускной хрупкости, являются редкоземельные элементы, в частности, лантан и церий. [19]
Транзисторы типа р-п - р используются крайне редко, так как имеют худшие электрические параметры. Основное преимущество технологии изготовления транзисторов типа п-р - п связано с относительно ( большим коэффициентом растворимости фосфора в кремнии, диффузия которого используется при создании области эмиттера. Кроме того, в транзисторах типа п-р - п неосновными носителями в базе являются электроны. Подвижность электронов при одинаковой температуре и концентрации примесей в кремнии приблизительно в два раза превышает подвижность дырок. [20]
Из этого ясно, что недостаток серы может возникать в областях, где с некоторого времени отказались от сульфатных удобрений и где навоз стали применять реже. Недостаток серы встречается сравнительно редко; однако, по нашему мнению, земледельцы-практики часто не обращают на это внимания, и в большинстве случаев, когда констатируют преимущество сульфата аммония или суперфосфата над аммонитратами или шлаками и объясняют это преимущество аммиачной формой азота или растворимостью фосфора, действительной причиной является именно присутствие серы. [21]
Фосфидная эвтектика и горячая трещина на границе зерен основного металла. X 800. [22] |
Вредное влияние фосфора на свойства сварных соединений заключается в снижении высокотемпературных характеристик металла шва вследствие ослабления межкристаллитных границ ( при выделении легкоплавких включений) и в ухудшении механических свойств швов при нормальной и низких температурах. Последнее обусловлено снижением пластичности металла в результате растворения фосфора и наличием на границах кристаллитов хрупких неметаллических прослоек. Так как растворимость фосфора в аустените ниже, чем в феррите, опасность образования кристаллизационных трещин и снижения механических свойств металла шва значительно больше для швов с аустенитнои структурой. [23]
Обогащение расплава фосфором также вызывает образование горячих трещин по границам кристаллитов. Так как растворимость фосфора в аустени-те меньше, чем в феррите, опасность возникновения кристаллизационных трещин в аустенитных швах значительно больше. [24]
Цепочка сульфидных включений и сульфидная пленка, послужившая причиной возникновения кристаллизационной трещины. X 1500. [25] |
В швах на углеродистых и низколегированных сталях фосфор преимущественно находится в твердом растворе, а не в виде неметаллических включений. Это обусловлено низкой концентрацией фосфора в металле швов и относительно высокой его растворимостью в феррите. В связи с низкой растворимостью фосфора в аустените фосфорсодержащие включения значительно чаще встречаются в швах с аустенитной структурой. В этих включениях фосфор может находиться в виде фосфидов, фосфидных эвтектик и фосфатов. [26]
Представленные на рис. 24 данные по влиянию легирующих элементов на растворимость фосфора в а-железе показывают, что легирование железа, содержащего фосфор, может приводить к нескольким конкурирующим процессам. К ним относятся усиление зернограничной сегрегации фосфора при умеренном снижении его растворимости в железе, с одной стороны, и ослабление сегрегации из-за связывания растворенного фосфора при выделении фосфидов в результате очень сильного снижения растворимости фосфора с другой. В ряде работ показано И09, 241 ], что в случае низколегированных конструкционных сталей весьма эффективными добавками, связывающими охрупчивающие примеси в химические соединения и значительно ослабляющими склонность к отпускной хрупкости, являются редкоземельные элементы, в частности, лантан и церий. [27]
УпрУгость паров фосфора над. [28] |
Судя по выделению фосфора, SiP не является низшим фосфидом кремния. Последние 0 2 г-ат фосфора выделяются только при низком давлении. Бильц предполагал, что это может быть также и результатом растворения фосфора в кремнии. Однако измерение растворимости фосфора в кремнии, проведенное Фуллером и Дитценбергером [126], показало, что при температуре 1250 таковая составляет всего около 1 3 вес. [29]
В соответствии с моделью неоднородного карбидообразования [1] при отпуске закаленной легированной стали вследствие более быстрого распада пересыщенного твердого раствора на границах зерен концентрация карбидообразующих элементов в феррите вблизи границ падает быстрее, чем в феррите объема зерна, приближаясь к равновесной, и остается ниже средней концентрации этих элементов внутри зерна в течение времени, зависящего от состава стали и температуры отпуска. Предполагается, что в обедненных карбидообразующими элементами приграничных зонах понижается термодинамическая активность фосфора, поэтому фосфор диффундирует в эти зоны. Влияние некарбидообразующих элементов в рамках этой модели является косвенным. Никель, например, ускоряет падение растворимости фосфора с понижением температурь), что связывается с повышением его термодинамической активности, усиливающим, в свою очередь, влияние неоднородно-стей твердого раствора на распределение фосфора. Влияние других элементов может быть обусловлено изменением поверхностной энергии и избыточной энергии границ зерен, размера аустенитного зерна, сопротивления начальной пластической деформации, т.е. изменением фона, на котором развиваются основные ( в рамках этой модели) процессы, ответственные за охрупчивание - неоднородное карбидообразование и перераспределение фосфора и его аналогов. [30]