Расчетное значение - модуль - Большая Энциклопедия Нефти и Газа, статья, страница 1
Самый верный способ заставить жену слушать вас внимательно - разговаривать во сне. Законы Мерфи (еще...)

Расчетное значение - модуль

Cтраница 1


Расчетное значение модуля увеличивают на 30 % из-за повышенного изнашивания зубьев.  [1]

Расчетные значения модуля и межосевого расстояния необходимо привести к величинам, предусмотренным соответствующими стандартами. В случае корректировки некоторых исходных величин ( z, m, , А) необходимо произвести повторно прочностной расчет, как проверочный. По окончательным данным геометрических расчетов выполняют чертежи колес ( см. стр.  [2]

Расчетные значения модуля упругости Е и температурного коэффициента линейного расширения а при повышенных температурах принимают по данным гл.  [3]

Расчетные значения модулей упругости и сдвига этих материалов представлены в табл. 9.18. Расчет проводили без учета пористости матрицы. При расчете принято, что упругие характеристики углеродных волокон не изменяются с повышением температуры. Совпадение расчетных и экспериментальных значений модулей упругости и сдвига для углепластика на основе полимерной матрицы, как видно из данных табл. 9.18, хорошее.  [4]

Ктах представляет собой расчетное значение модуля упругости в конце процесса от-вердцения при данной температуре.  [5]

По этой же причине имеет место некоторое превышение расчетных значений модулей упругости материалов, изготовленных на основе кремнеземных, кварцевых и углеродных волокон. При близких значениях коэффициентов армирования в трех направлениях лучшее описание модулей упругости дает второй подход, использование которого в случае больших различий в коэффициентах армирования порождает существенную погрешность для модуля упругости в направлении наименьшего содержания арматуры. Для материалов с малым ц в одном направлении армирования хорошее совпадение расчетных и экспериментальных значений EI наблюдается при использовании зависимостей (9.24), (9.25) первого подхода. Эти зависимости описывают верхний и средний уровни изменения коэффициентов Пуассона. При 1 % jxs ( АЗ совпадение расчетных к экспериментальных значений Vfj удовлетворительное.  [6]

7 Диаграмма напряжение-деформация, поясняющая снижение модуля Юнга с повышением напряжения.| U Зависимость относительного модуля упругости полиэтилена, наполненного волластонитом, от разности между температурой плавления и температурой испытания при различной объемной доле наполнителя. [7]

Существуют также другие эффекты, способные вызывать отклонения расчетных значений модулей упругости наполненных композиций от экспериментальных.  [8]

Кроме того для пар, располагаемых ближе к двигателю, расчетное значение модуля часто получается много меньше, чем реально допустимое из условий технологии нарезания зубьев точных передач. Это условие особенно характерно для маломощных приводов.  [9]

10 Схема простой ( а и сложной ( гетерогенной ( б структуры дисперсных частиц гетерофазной композиции.| Частотные зависимости верхних ( 1в, 2в, 1 ъ, 2 в и нижних ( 1н, 2н. [10]

Влияние изменений в составе и структуре гетерогенных полимер-полимерных композиций на расчетные значения модуля и возможности использования получаемых результатов анализируются в следующих разделах.  [11]

В целях установления степени реализации упругих свойств углеродных волокон в табл. 6.16 представлены также расчетные значения модулей упругости и сдвига.  [12]

Таким образом, при расчетах, связанных с учетом сжимаемости жидкости, следует как можно внимательнее выбирать расчетное значение модуля упругости.  [13]

При использовании уравнений (3.12) и (3.14) для расчета вязкоупругих свойств композиций с высоким содержанием наполнителя получаются значительные ошибки. Расчетные значения модуля в зависимости от концентрации наполнителя оказываются всегда меньше экспериментальных. Поэтому обычно в уравнение вводится эмпирический поправочный коэффициент, учитывающий объемную долю, эффективно занимаемую наполнителем. По уравнениям (3.12) и (3.14) эта доля легко рассчитывается.  [14]

Для углепластика с углеродной матрицей расчетные значения упругих характеристик плохо согласуются с опытными данными. Расчетное значение модуля упругости оказывается существенно ниже экспериментального. Для модуля сдвига получается противоположный результат - экспериментальные значения более чем в 2 раза ниже расчетных. Такое явление объясняется тем, что в процессе создания углеродной матрицы происходит науглероживание волокон, что способствует повышению их жесткости. Кроме того, жесткость углеродной матрицы оказывается значительно выше жесткости исходной полимерной матрицы.  [15]



Страницы:      1    2