Cтраница 2
Следовательно, сохраняются и соотношения (V.36) и (V.37), а также соотношения (V.76) и (V.77) для определения отношений констант скорости. Таким путем могут быть вычислены относительные константы скорости взаимодействия различных молекул с активными промежуточными частицами. [16]
Наиболее важная, но и наиболее трудная задача в молекулярной теории адсорбции - определение потенциальной функции Ф взаимодействия молекул с поверхностью твердого тела. При однозначном определении этой функции Ф из опытных адсорбционных данных и при строгих ее кванто-вомеханических расчетах встречаются серьезные трудности. Вместе с тем приближенные, основанные на достижениях полуэмпирической теории межмолекулярных взаимодействий, расчеты потенциальных функций Ф для взаимодействия молекул разного строения с однородной поверхностью многих твердых тел, использующие физико-химические свойства адсор-бата и адсорбента, приводят к значениям термодинамических характеристик адсорбции, находящимся в удовлетворительном согласии с опытом. Особенно хорошие результаты получены при взаимодействии различных молекул с поверхностью неполярных твердых тел - неспецифических адсорбентов, когда основными силами притяжения являются дисперсионные. В случае сложных молекул, состоящих из нескольких сортов силовых центров, например молекул углеводородов, для повышения точности приближенных расчетов Ф в настоящем этапе, по-видимому, целесообразно производить уточнение параметров потенциальных функций ф взаимодействия силовых центров молекулы с поверхностью, используя опытные адсорбционные данные для небольшого числа молекул, состоящих из тех же силовых центров. Эти уточненные потенциальные функции ф далее могут быть использованы для предсказания энергий и термодинамических характеристик адсорбции других молекул, состоящих из этих же силовых центров на том же адсорбенте. [17]
Наиболее важная, но и наиболее трудная задача в молекулярной теории адсорбции - определение потенциальной функции Ф взаимодействия молекул с поверхностью твердого тела. При однозначном определении этой функции Ф из опытных адсорбционных данных и при строгих ее кванто-вомеханических расчетах встречаются серьезные трудности. Вместе с тем приближенные, основанные на достижениях полуэмпирической теории межмолекулярных взаимодействий, расчеты потенциальных функций Ф для взаимодействия молекул разного строения с однородной поверхностью многих твердых тел, использующие физико-химические свойства адсор-бата и адсорбента, приводят к значениям термодинамических характеристик адсорбции, находящимся в удовлетворительном согласии с опытом. Особенно хорошие результаты получены при взаимодействии различных молекул с поверхностью неполярных твердых тел - неспецифических адсорбентов, когда основными силами притяжения являются дисперсионные. В случае сложных молекул, состоящих из нескольких сортов силовых центров, например молекул углеводородов, для повышения точности приближенных расчетов Ф в настоящем этапе, по-видимому, целесообразно производить уточнение параметров потенциальных функций ф взаимодействия силовых центров молекулы с поверхностью, используя опытные адсорбционные данные для небольшого числа молекул, состоящих из тех же силовых центров. Эти уточненные потенциальные функции ф далее могут быть использованы для предсказания энергий и термодинамических характеристик адсорбции других молекул, состоящих из этих же силовых центров на том же адсорбенте. [18]
Все указанные результаты применимы к различным веществам. В чем же заключена возможность молекулярного спектрального анализа. Качественный молекулярный спектральный анализ возможен потому, что строение энергетических уровней молекул и изменение этих уровней при взаимодействиях различных молекул индивидуально, что приводит к возникновению индивидуальных, характерных для данного химического соединения спектров. Это проявляется как в спектрах поглощения, так и в спектрах комбинационного рассеяния и люминесценции. [19]