Cтраница 1
Сферические и цилиндрические волны распространяются примерно так же, как только что рассмотренные плоские волны. За подробностями отсылаем к курсам классической теореаической физики. [1]
В этом разделе будут рассмотрены одномерные сходящиеся и расходящиеся сферические и цилиндрические волны. Амплитуда этих волн, в отличие от плоских, меняется не только под действием диссипативных процессов, но и из-за геометрических условий распространения. Очевидно, что это обстоятельство должно сказаться на масштабах различных явлений, связанных с искажением формы волны: в расходящихся волнах амплитуда волны быстро убывает и нелинейные искажения тормозятся не только тем, что в среде есть диссипативные потери, но и расходимостью; наоборот, в сходящихся волнах амплитуда волны возрастает и геометрические условия распространения в какой-то мере компенсируют затухание в среде, что способствует развитию нелинейных эффектов. Есть некоторая аналогия между распространением плоской волны в диссипативной среде и распространением неплоских волн. Эта аналогия связана с тем, что нелинейные явления не чувствительны к причинам, вызывающим изменение амплитуды волны. [2]
Определяются фундаментальные понятия, дается классификация динамических процессов. Рассматриваются одномерные плоские, сферические и цилиндрические волны, а также одномерные динамические процессы в стержнях и тонких пластинах. Даны решения начальных задач для пространства и плоскости, стационарных и нестационарных двумерных задач для полуограниченных областей. Для облегчения чтения приведены различные модели сплошных сред, а также сведения об обобщенных функциях и их интегральных преобразованиях. [3]
Быстрый прогресс в решении волновых задач теории пластичности тесно связан с запросами современной техники: применением импульсного нагружения, созданием полостей в грунтах, действием землетрясений на конструкции, сейсморазведкой. Книга известного польского специалиста содержит обзор и современное изложение методов решения волновых задач на основе различных вариантов теории пластичности. Рассматриваются основные уравнения динамики неупругих сред, математические основы теории распространения волн, сферические и цилиндрические волны в различных средах. Подробно обсуждаются численные методы решения задач, приведены числовые примеры по распространению волн в пластических средах. [4]