Формальные выкладки - Большая Энциклопедия Нефти и Газа, статья, страница 1
Христос Воскрес! А мы остались... Законы Мерфи (еще...)

Формальные выкладки

Cтраница 1


Формальные выкладки, указанные в (6.11), приводят теперь к уравнениям диффузии, получающимся из (6.12) при замене - с на с.  [1]

Все формальные выкладки (6.12) - (6.23) применимы также и к динамике; при этом нужно лишь внести некоторые очевидные изменения в конечные результаты. Мы не будем повторять здесь проведенное там рассмотрение и промежуточные выражения ( при необходимости читатель может возобновить в памяти содержание гл.  [2]

Мы сокращаем дальнейшие формальные выкладки, рассуждая аналогично тому, как это делалось в предыдущем примере: правые части уравнений движения не зависят от х и у, а это ведет к прямолинейным барьерам.  [3]

Чтобы сделать все эти формальные выкладки более наглядными, мы рассмотрим один простой пример. Пусть рассматриваемое движение является плоским.  [4]

Однако мы должны оправдать наши формальные выкладки.  [5]

Доказательство теоремы 5.9. Вначале проведем формальные выкладки, поясняющие идею доказательства.  [6]

Справедливость неравенства ( 11) необходимо еще установить, так как указанные формальные выкладки носят лишь характер наводящих рассуждений и не имеют доказательной силы.  [7]

С - некоторый контур интегрирования, не зависящий от г. Проведем прежде всего формальные выкладки.  [8]

Интервалу 0 s 1 здесь соответствуют комплексные значения ф, однако это не оказывает никакого влияния на формальные выкладки.  [9]

Конечно, парадоксальным он кажется лишь на первый взгляд; на самом деле получившийся знак минус предупреждает нас о том, что мы провели формальные выкладки, не разобравшись до конца в свойствах геометрической конфигурации.  [10]

Мы оставляем читателю формальные выкладки, которые приведут его к уравнению, доказывающему лемму.  [11]

Для облегчения понимания формальных аспектов те-орииб учебник построен таким образом чтобы возможные недостатки математического образования компенсировались по ходу изучения курса. Бесспорно, все формальные выкладки учебника вполне могут быть усвоены читателем, имеющим элементарные представления о математическом анализе на уровне первого-второго курсов технического вуза.  [12]

В то же время читатель легко заметит, что не все решения в книге проведены одинаково подробно и полно. Мы рассчитываем, что эта книга должна не столько читаться, сколько изучаться с карандашом и бумагой в руках, а потому сделали упор на разъяснении принципиальных моментов, надеясь, что не вызывающие особых затруднений этапы решения ( например, формальные выкладки) читатель проведет сам.  [13]



Страницы:      1