Бескислородная керамика - Большая Энциклопедия Нефти и Газа, статья, страница 2
"Я люблю путешествовать, посещать новые города, страны, знакомиться с новыми людьми."Чингисхан (Р. Асприн) Законы Мерфи (еще...)

Бескислородная керамика

Cтраница 2


16 Аппаратурная схема получения гранулированного поликристаллического кремния. [16]

Для грануляции поликристаллического кремния используются высокочастотная техника и аппаратура, применяемые для синтеза тугоплавкой бескислородной керамики ( см. гл. Схема высокочастотного аппарата показана на рис. 8.31. Она включает в себя высокочастотный генератор с частотой в диапазоне 0 44 - г 5 25 МГц, металлодиэлектрический реактор, устройство для транспорта прутков поликристаллического кремния в зону прямого индукционного нагрева, устройство для дезинтегрирования струи расплава, приемное устройство для получения гранул кремния.  [17]

Следует отметить, что в последние десятилетия резко увеличилось число работ по получению дисперсных материалов на основе бескислородной керамики ( карбиды, нитриды) с использованием в качестве сырья летучих соединений ( хлориды, фториды, гидриды) и плазменной техники. Основное направление подобных работ - получение тонкодисперсных ( микронных и субмикронных) порошков, частицы которых имеют определенную морфологию. Стоимость таких дисперсных материалов резко возрастает с уменьшением размера частиц. Эти аспекты развития технологии получения бескислородной керамики также рассмотрены ниже.  [18]

19 Состав выхлопных газов фтористоводородного завода. [19]

Приведенные здесь результаты, разумеется, не имеют целью предложить новый промышленный метод переработки флюорита на карбид кальция и фториды углерода. Достигнутые выходы целевых продуктов для этого недостаточны, в процессе выполнения экспериментов возникало много технических проблем. Проведенное исследование позволило применить разработанный выше способ высокочастотного синтеза бескислородной керамики и его аппаратурное оформление по новому, более сложному назначению - проводить комплексную переработку природных минералов и концентратов, используя при этом неравновесные условия, при которых можно получить выходы продуктов, во много раз превышающие равновесные. Существует большое количество природных и синтетических минералов, переработка которых не сопряжена с такими термодинамическими ограничениями, как в данном случае, и которые можно переработать на целевые продукты, используя разработанный выше способ и его аппаратурное оформление.  [20]

Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики ( карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.  [21]

Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg xCj при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики ( карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.  [22]



Страницы:      1    2