Арккосинус - Большая Энциклопедия Нефти и Газа, статья, страница 3
Если памперсы жмут спереди, значит, кончилось детство. Законы Мерфи (еще...)

Арккосинус

Cтраница 3


Из уравнений (3.20) и (3.21) следует, что аналитическая функция (3.18) ( гиперболический арккосинус) определяет собой семейство двух кривых I и ч, из которых кривые const в соответствии с (3.20) образуют семейство конфокальных эллипсов, а кривые т ( const в соответствии с (3.21) - семейство конфокальных гипербол. Таким образом, функция (3.18), рассматриваемая как комплексный потенциал, может служить для расчета электрических полей, у которых эквипотенциальные поверхности представляют собой конфокальные цилиндры эллиптического или гиперболического сечения.  [31]

Подчеркнем, что условие а 1 не входит в само определение арксинуса и арккосинуса, но непосредственно вытекает из первого условия этих опре делений. Между тем поступающие часто употребляют, например, выражения arcsin л, arccos 2 и другие, не имеющие смысла.  [32]

Для того чтобы решать различные задачи на вычисления, связанные с арксинусом, арккосинусом и др., вполне достаточно хорошо знать приведенные определения и известные тригонометрические формулы. Остановимся на нескольких наиболее типичных примерах такого рода; в некоторых из них получаются весьма полезные соотношения.  [33]

Для того чтобы решать различные задачи на вычисления, связанные с арксинусом, арккосинусом и др., вполне достаточно хорошо знать при веденные определения и известные тригонометрические формулы.  [34]

Для того чтобы решать различные задачи на вычисления, связанные с арксинусом, арккосинусом и др., вполне достаточно хорошо знать приведенные определения и известные тригонометрические формулы. Остановимся на нескольких наиболее типичных примерах такого рода; в некоторых из них получаются весьма полезные соотношения.  [35]

Для решения воспользуйтесь графиком функции y cosx ( аналогично задаче 1) и определением арккосинуса.  [36]

Так же как и для синуса, выделяется одно определенное решение уравнения cosjra, которое называется арккосинусом.  [37]

Выбор значений х, попадающих в интервал 0дс2я, удобнее осуществить, если при решении мы постараемся воспользоваться арккосинусами, областью значений которых является указанный интервал.  [38]

T ro9 i: 7 0 величина Л меньше нуля, равна нулю или больше единицы для всех значений арккосинуса.  [39]

Поскольку мы должны найти минимальное расстояние между точками больших кругов ( elffl), ( e lz), а арккосинус - убывающая функция, нужно подобрать ф и г) так, чтобы при данных / i, / 2 величина Re ( e 4 / i, e lz) приняла наибольшее возможное значение.  [40]

Так же как и для синуса, выделяется одно определенное решение уравнения cos x a и ему дается специальное название - арккосинус.  [41]

Для введения общих формул решения простейших тригонометрических уравнений и неравенств при рассмотрении тригонометрических функций в X классе вводятся понятия арксинус, арккосинус, арктангенс и арккотангенс числа а. Каждое из этих понятий вводится как число - корень соответствующего уравнения ( s nx a, cos t a, tgx a, cigx a) - на определенном интервале. Вопрос о существовании и единственности такого числа решается на основе рассмотрения теоремы о корне.  [42]

Рассмотрим, например, сумму arcsin я Ц - arcsin у, где л0, ), и преобразуем эту сумму в арккосинус.  [43]

Так как в этом последнем интервале содержатся значения арккосинуса и арккотангенса, то всякую сумму двух арк-функций от положительных аргументов можно преобразовать в арккосинус, а также в арккотангенс.  [44]

Из определения обратной функции следует, что D ( arccos) [ - 1; 1], Е ( arccos) [ 0; я ] и что арккосинус - убывающая функция.  [45]



Страницы:      1    2    3    4