Cтраница 1
Катодное напыление - процесс, при котором молекулы металла отрываются от его поверхности в атмосфере разреженного газа при помощи электрической дуги и осаждаются на соответственно расположенной поверхности обрабатываемого изделия, образуя тонкое покрытие. Недостатком катодного напыления является загрязнение металлической поверхности в результате реакции металла с газом, образующим защитную атмосферу. Однако этот способ является лучшим для распыления платины, родия, иридия и палладия. [1]
Метод катодного напыления основан на бомбардировании ионами или атомами поверхности наносимого вещества. [2]
Вакуумные - катодное напыление или испарение в вакууме. [3]
Исследованию метода катодного напыления посвящены несколько монографий и ряд статей [6, 23], однако применительно к получению антифрикционных износостойких покрытий этот метод исследован очень мало, хотя он является весьма перспективным для получения антифрикционных износостойких покрытий. Особенности этого метода состоят в том, что он позволяет наносить многокомпонентные покрытия с регулируемым количественным соотношением составляющих; наносимые покрытия имеют очень тонкую структуру. Вместе с тем многие вопросы, касающиеся химического состава, физических свойств, структуры покрытий, полученных из многокомпонентных оснований, до сих пор практически не изучены. Точно не установлено, меняется ли химический состав и строение вещества, перенесенного методом катодного напыления на подложку. Неизвестно, меняется ли процентное соотношение компонентов в покрытии в сравнении с первоначальным составом наносимого материала. Неизвестно, как располагаются атомы многокомпонентного покрытия. Образуют ли они кристаллы, соответствующие первоначальным веществам по химическому составу и строению, или нет. Как, в каком порядке располагаются кристаллы многокомпонентных веществ. [4]
Как отмечалось, катодное напыление основано на явлении, при котором с поверхности любого вещества, бомбардируемого ионами или атомами с достаточно большой энергией, вылетают атомы этого вещества и осаждаются на расположенных вблизи твердых поверхностях. Существует много методов генерации ионов, однако наиболее часто применяется простейший метод с использованием тлеющего разряда, который зажигается при подведении высокого напряжения к двум плоским электродам, помещенным в среду разреженного газа с давлением от 10 - 3 до Ю 1 мм рт. ст. Существует несколько теорий, объясняющих явление катодного напыления. [5]
Вакуумные - - катодное напыление или испарение в вакууме. [6]
Создана вакуумная установка катодного напыления и разработаны методики интерференционных покрытий, стойких к лазерному излучению и механически прочных для всех длин волн. На ней изготовлены зеркала для экспериментальных лазеров и оптических схем съемки, копирования и проекции, а также многослойные диэлектрические покрытия для осветительной оптики импульсных лазеров. [7]
Методом, подобным вакуумному напылению, является катодное напыление, когда предмет, на который наносится покрытие, размещается в электрическом поле вблизи катода. [8]
Применение платины, наносимой на образец методом катодного напыления, в сочетании с накладными электродами из платины или нержавеющей стали, обкатанной платиной в плоскости соприкосновения с образцом, создает надежный контакт в процессе определения диэлектрических свойств материалов при 20 - 600 С. Для удобства измерений, связанных с высокими температурами и ограниченными по объему измерительными камерами, выбраны электроды с оптимальными в этих условиях габаритными размерами: диаметр измерительного электрода 25 мм, электрода высокого напряжения 40 мм, ширина охранного кольца 5 мм. При 300 - 600 С возможно применение двухэлектродной системы, что не вносит существенных ошибок в результаты измерения удельного объемного сопротивления р и тангенса угла диэлектрических потерь tg8 ( табл. 1.1 и 1.2) и значительно упрощает метод измерения при высоких температурах, так как при одновременном измерении большого количества образцов без нарушения режима исследований необходимо применение манипуляторов для перестановки электродов или образцов. [9]
Другим методом нанесения тонких износостойких покрытий является метод катодного напыления и ионной бомбардировки. Для равномерного нанесения пленок на режущие кромки многозубых инструментов последние загружаются в специальный барабан камеры и вращаются относительно катодов. В настоящее время для упрочнения твердосплавных пластинок износостойкой пленкой выпускаются установки моделей Бу-лат - 2м и Вулат-Зм. Основные технические характеристики установки Булат - 2м приведены ниже. [10]
Медный шарик в качестве вывода полупроводниковых приборов. [11] |
На эвтектику Al-Si, образованную в окнах слоя окисла кристалла, катодным напылением через трафарет последовательно наносят Сг, Си и А1 ( Сг - 1500 А; Си - 6000 А; А1 - 1000 А), а затем методом окунания - толстый слой оловянисто-свинцо-вого припоя. Вплавление медных шариков в припой происходит в печи с контролируемой атмосферой водорода. [12]
Улучшение эксплуатационных свойств пористых силицированных покрытий достигается заполнением пор методами гальванического осаждения, катодного напыления, осаждения из расплава, шаржирования. Заполнение пор антифрикционными или материалами повышенной твердости существенно изменяет триботехнические и антикоррозионные характеристики. [13]
Первичная тонкая пленка меди на стекле может быть получена также методами вакуумного или катодного напыления. Затем пленку наращивают гальваническим меднением для образования необходимого токопроводящего слоя. [14]
Шпица раздела характеризуется очень большой плотностью экранирующих центров, поскольку внешняя поверхность во время катодного напыления подвергается интенсивной бомбардировке и, кроме того, может быть заряжена активированными примесями. [15]