Cтраница 3
Кривые растяжения полимера в различных состояниях. [31] |
Предельным состоянием полимера часто называют такое напряженное состояние, при котором дальнейшее повышение напряжений сопровождается усилением процесса вынужденноэластиче-ской деформации, являющегося аналогом пластической деформации в металлах. Такое определение предельного состояния неприменимо для хрупкого разрушения, которое является наиболее опасным видом разрушения. [32]
Зависимость предельной работы деформации. [33] |
В разделе освещены методы расчета на прочность. Даны методы определения предельного состояния бездефектных труб и базовых деталей оборудования. Рассмотрены критерии для оценки предельного состояния деталей с дефектами. Приведена методика оценки предельного состояния в условиях циклического нагружения. Рассмотрены методы определения предельного состояния с использованием подходов механики трещин и разрушения. [34]
При плоском и объемном состоянии предельное состояние наступает от действия двух или трех главных напряжений, число различных комбинаций которых бесконечно. Поэтому и число опытов по определению предельных состояний, соответствующих этим комбинациям главных напряжений бесконечно. [35]
Технологические и эксплуатационные процессы влияют на микроструктуру сложным образом ( см. пп. Отсутствие фундаментальной количественной зависимости свойств материала от определенных структурных параметров создает главную трудность в определении предельных состояний, прочности и ресурса. Поэтому прогнозирование характеристик материала с учетом изменения его структуры требует проведения широкого спектра исследований. [36]
Основное внимание уделяется этапу построения границ ОЖФ. На первой стадии этого этапа для статически определимых задач при дискретном распределении точек контакта способ определения предельных состояний при пренебрежении силами трения заключается в следующем. Предположим, что к объекту приложены сила и момент. Будем увеличивать составляющие силы и момента до тех пор, пока не будет достигнуто предельное состояние. [37]
В монографии систематически изложены вопросы сопротивления деформированию и разрушению при малоцикловом высокотемпературном нагружении. Разработаны способы интерпретации связи циклических напряжений и деформаций на основе изоциклических и изохронных диаграмм циклической ползучести и свойств подобия. Для определения предельных состояний по моменту образования разрушения используется деформационно-кинетический критерий длительной малоцикловой прочности. Закономерности деформирования и разрушения использованы для разработки основ методов оценки малоцикловой прочности элементов конструкций при нормальной и высоких температурах. [38]
На основе анализа изложенных выше данных по оценке коррозионного состояния и надежности оборудования и ТП ОНГКМ, результатов внутритрубной и наружной дефектоскопии, натурных и лабораторных коррозионно-механических испытаний, металлографических исследований темплетов и образцов, результатов технического диагностирования конструкций, а также с учетом действующих нормативно-технических документов ( НТД), разработана методика диагностирования оборудования и ТП сероводородсодержащих нефтегазовых месторождений. Методикой устанавливается периодичность, способы и объем контроля технического состояния оборудования и ТП, признаки оценки вида дефектов и способы определения предельного состояния оборудования и ТП с учетом уменьшения толщины стенок до расчетной величины ( Tmin), ниже которой не обеспечивается необходимый запас несущей способности. Методика позволяет также оценить степень потенциальной опасности дефектов оборудования и ТП и определить рациональные условия их дальнейшей эксплуатации или ремонта. [39]
В разделе освещены методы расчета на прочность. Даны методы определения предельного состояния бездефектных труб и базовых деталей оборудования. Рассмотрены критерии для оценки предельного состояния деталей с дефектами. Приведена методика оценки предельного состояния в условиях циклического нагружения. Рассмотрены методы определения предельного состояния с использованием подходов механики трещин и разрушения. [40]
Следовательно, ни в пределах заданного ресурса конструкции, ни тем более при продлении ее ресурса невозможно обеспечить безопасную эксплуатацию без учета факта появления и развития усталостных трещин. В ряде мест конструкции допускаются усталостные трещины. Их размер определяется предельной несущей способностью детали и всего узла. Существование трещины в такой ситуации не является браковочным признаком для замены детали. На первый план выходит представление о длительности последующего, после обнаружения, роста трещины в эксплуатации до критических размеров. Получить такую информацию наиболее достоверно можно только на основе непосредственного анализа скорости роста трещины в эксплуатации и на основе использования подходов механики разрушения к определению предельного состояния тел с трещинами. [41]