Алмазная пленка - Большая Энциклопедия Нефти и Газа, статья, страница 2
Лучше уж экстрадиция, чем эксгумация. Павел Бородин. Законы Мерфи (еще...)

Алмазная пленка

Cтраница 2


В настоящее время существуют технологии получения нелегированного и р-типа легированного алмаза, поэтому основное внимание сосредоточено на исследовании фотовольтаических структур на основе униполярных барьерных структур ( барьер Шоттки) и гетеропереходов между алмазной пленкой и другим полупроводником п - или р-типа. В частности, в работе [60] было показано, что существует целый ряд металлов, с которыми алмаз образует контакт Шоттки. В то же время, с TiC и некоторыми другими материалами образуется омический контакт. Природа контакта зависит также от способа обработки поверхности алмаза перед нанесением металлизации.  [16]

Соединение в одном реакторе двух процессов - роста алмаза ( и графита) из углеродсодержащего газа и каталитического получения атомарного водорода в непосредственной близости от затравочного монокристалла алмаза - позволило авторам совместно с Н. Д. Полянской получить и исследовать структуру толстых эпитаксиальных алмазных пленок.  [17]

Алмазные пленки с преимущественной ориентацией микрокристаллитов, которые называют ориентированными или текстурированными, были получены на монокристаллических подложках из кремния, никеля, кобальта, SiC, кубического BN, иридия и платины ( см. [59]), однако гетероэпитаксиальные монокристаллические алмазные пленки с диаметром более 1 мм не были получены вплоть до последнего времени. Монокристаллические Ir и Pd являются одними из наиболее перспективных материалов, которые рассматриваются как подложки для гетероэпитаксиального роста монокристаллических алмазных пленок. Кроме того, оба вещества не образуют карбидов и достаточно слабо растворяют углерод. Получены гетероэпитаксиальные пленки размером до 5 мм.  [18]

С использованием УДА пленки как зародышевого слоя получены алмазные пленки улучшенного качества методом химического плазменного осаждения: тонкие, однородные. Получены качественные алмазные пленки с хорошей адгезией на образцах карбида вольфрама, пригодные для практического использования в качестве режущих инструментов.  [19]

Перспективно применение фуллереновых покрытий в качестве катализаторов при напылении искусств, алмазных покрытий из углеродной плазмы газового разряда. Использование в этой технологии многослойных покрытий С 70 привело к увеличению скорости роста алмазной пленки на - 10 порядков.  [20]

Уменьшение величины порогового автоэмиссионного поля связано с резким уменьшением концентрации х / - связей и слабым увеличением концентрации яр2 - связей в алмазной пленке. Следует заметить, что хотя определенное количество зр2 - связей требуется для проявления автоэмиссии из алмазной пленки, но этого совершенно недостаточно для появления автоэмиссии при низких пороговых полях.  [21]

Алмазные пленки с преимущественной ориентацией микрокристаллитов, которые называют ориентированными или текстурированными, были получены на монокристаллических подложках из кремния, никеля, кобальта, SiC, кубического BN, иридия и платины ( см. [59]), однако гетероэпитаксиальные монокристаллические алмазные пленки с диаметром более 1 мм не были получены вплоть до последнего времени. Монокристаллические Ir и Pd являются одними из наиболее перспективных материалов, которые рассматриваются как подложки для гетероэпитаксиального роста монокристаллических алмазных пленок. Кроме того, оба вещества не образуют карбидов и достаточно слабо растворяют углерод. Получены гетероэпитаксиальные пленки размером до 5 мм.  [22]

23 Параметры материалов-кандидатов для фотовольтаического. [23]

Интерес к исследованиям методов синтеза и физико-химических свойств различных алмазных материалов обусловлен, с одной стороны, необычными физико-химическими свойствами алмаза, благодаря которым он являются привлекательным объектом фундаментальной науки, а с другой стороны - богатыми перспективами прикладного использования таких объектов. При этом такая важная характеристика электронных свойств полупроводникового алмаза, как подвижность носителей ( а алмаз имеет рекордно высокие подвижности как электронов, так и дырок), определяется структурным совершенством алмазной кристаллической решетки. Область возможных применений алмазных пленок в научных исследованиях и современных технологиях необычайно широка. Это интегральные схемы, включающие в себя элементы на основе алмаза, которые могут привести к революционным изменениям в области миниатюризации современных компьютеров, а также к развитию силовой электроники.  [24]

Эпитаксиальные алмазные пленки, очевидно, могут быть получены лишь в условиях, когда скорость роста алмаза много больше скорости роста графита. Это также возможно, если подобрать некоторый гипотетический травитель, который не действовал бы на алмаз, но газифицировал зародыши графита. Все усилия по синтезу эпи-таксиальных алмазных пленок направлены именно на подавление роста графита при сохранении значительной скорости роста алмаза.  [25]

По-видимому, наиболее экономичным является создание алмазных пленок методами газофазного осаждения с одновременным легированием их бором. При осаждении таких пленок возникает ряд проблем. Одна из них связана с тем, что алмазная пленка - поликристаллическая, что приводит к неоднородности растущей поверхности, дополнительному рассеянию света гранями, гетерированию дефектов поверхностью микрокристаллов. Последнее, в свою очередь, может привести к изменению механизма электрической проводимости.  [26]

27 Физические свойства алмаза и кремния. [27]

Наличие границ между кристаллитами резко ухудшает характеристики алмаза, в частности, подвижность основных носителей, кроме того, границы выступают как центры рекомбинации и ловушки, а также являются центрами рассеяния фононов. Рост монокристаллических пленок оказался возможным либо на алмазной подложке, либо на подложке из кубического BN, но обе они очень дороги и практически недоступны для размеров более 1 мм. Именно эти проблемы привели к тому, что, несмотря на более чем 30-летнюю историю активного исследования алмазных пленок, они не получили широкого применения ни в одной массовой технологии.  [28]

В еще большей степени это замечание справедливо в отношении более высоких уровней организации углеродных структур. Когда человечество стоит на пороге XXI века и наука ежедневно вносит конструктивные изменения, давая жизнь новейшим открытиям ( коаксиальные углеродные нанотрубки, линейные аналоги фуллеренов и пр. И признается лишь тот факт, что различные его формы - поликристаллические графиты, сажи, углеродные пленки, дендриты, ламелярные и надмолекулярные образования, коксы, стеклоуглерод, пироуглерод, карбин, алмаз и алмазные пленки, шунгит, антрацит, углеродные и графитовые волокна, микропористые адсорбенты, композиционные материалы и пр.  [29]

Впервые предложен и реализован способ получения алмазных пленок методом лазерного испарения УДА. Исследованы режимы испарения УДА в случае рубинового ( Х694 нм) и неодимового ( Х1060 нм) лазеров. Был предложен метод уменьшения температуры испарения для сохранения алмазной фазы, основанный на введении в мишень тяжелой органической жидкости. Впервые получены алмазные пленки при испарении УДА неодимовым лазером. Исследованы их структура и свойства.  [30]



Страницы:      1    2    3