Cтраница 3
Формирование покрытий из кремнийорганических олигоме-ров с большой концентрацией фенильных групп на эластичном подслое позволяет наряду с уменьшением внутренних напряжений в 2 - 3 раза повысить адгезию покрытий путем формирования в них упорядоченной структуры. Причина этого явления обусловлена тем, что структурные элементы подслоя из мелами-ноалкидного олигомера играют при этом роль центров струк-турообразования, а высокоэластические свойства подслоя обеспечивают релаксацию внутренних напряжений. Нанесение эластичного подслоя на подложку позволяет сформировать однородную и упорядоченную структуру также в покрытиях из расплавов кристаллических полимеров. При получении покрытий из расплавов полиэтилена низкого давления взаимодействие полимера с поверхностью подложки приводит к резкому замедлению подвижности структурных элементов, препятствуя формированию упорядоченной структуры в слоях покрытий, прилегающих к подложке ( рис. 3.2), в то время как в слоях, граничащих с воздухом, формируется упорядоченная структура ламелярного типа, образующая сетку. Покрытия с такой неоднородной структурой характеризуются высокими внутренними напряжениями, вызывающими их самопроизвольное отслаивание в процессе эксплуатации. Формирование однородной упорядоченной структуры и резкое понижение внутренних напряжений в системе наблюдаются при использовании в качестве подслоя покрытий с оптимальной толщиной, из эластомерных систем. При этом в слоях, граничащих с подслоем и воздухом, формируется сетчатая структура из ламелей, а внутренние напряжения понижаются до десятых долей мегапаскалей, что характерно для эластичного подслоя. [31]
Весьма усиленные облицовки состоят из 3 - 5 слоев полимерных мастик общей толщиной до 3 - 5 мм. Для увеличения механической прочности между слоями укладывают стеклоткань или стеклохолст. Весьма усиленные облицовки должны также иметь эластичный подслой. [32]
В зависимости от степени агрессивности среды и условий эксплуатации различают простые, усиленные и весьма усиленные покрытия, различающиеся числом наносимых слоев и наличием эластичных и армирующих слоев. Для оборудования, эксплуатируемого в газообразных и парообразных средах, а также в слабоагрессивных жидкостях при комнатных и умеренных температурах, достаточно использовать простые покрытия, состоящие из грунта и 1 - 2 покрывных слоев с общей толщиной 1 - 1 5 мм. Для улучшения механической прочности такие покрытия армируют стеклотканью и другими волокнистыми наполнителями ( усиленные покрытия), при необходимости вводят дополнительный эластичный подслой. [33]
Функции каждого слоя заключаются в следующем. Подслой свинца является непроницаемым подслоем, предохраняющим стальной корпус аппарата от воздействия серной кислоты. Его применяют в наиболее ответственных и нагруженных механически узлах и аппаратах. Подслой полиизобутилена выполняет функцию второго непроницаемого эластичного подслоя, который, повышая деформативность конструкции, дополнительно герметизирует подслой свинца. [34]
Изгиб или коробление происходят в направлении поверхности с большей усадкой. Разная усадка слоев с двух противоположных поверхностей может быть обусловлена неодинаковой интенсивностью сушки и неоднородной структурой материала. При формировании полимерных систем в виде тонких пленок на поверхности твердых тел в слоях толщиной 0 2 мкм, непосредственно прилегающих к поверхности твердого тела, возникает структура, существенно отличная по морфологии, размеру, плотности, концентрации связей, густоте пространственной сетки и другим параметрам от структуры остальных слоев. При взаимодействии с подложкой происходит изменение не только структуры полимера, но и его физического состояния по толщине пленки. Так, например, при формировании покрытий из синтетических каучуков различного химического состава на поверхности стеклянных и металлических подложек с уменьшением толщины покрытий высокоэластические свойства их ухудшаются. Поэтому покрытия из таких каучуков толщиной менее 30 мкм не могут применяться в качестве эластичного подслоя, обеспечивающего релаксацию внутренних напряжений при формировании покрытий из жест-коцепных полимеров на таком подслое. В результате адсорбционного взаимодействия релаксационные процессы в граничных слоях становятся практически полностью заторможенными, а усадка их - незавершенной. Иные закономерности в изменении этих параметров выявлены для других слоев, и особенно для слоев, граничащих с воздухом. Изменение структуры и свойств этих слоев в процессе формирования свидетельствует о знали-тельной их усадке. [35]
Обозначив буквами М - металл, Р - резину, П - полуэбонит, Э - эбонит, рассмотрим применяемые на практике схемы антикоррозионной защиты изделий из черных металлов. Наиболее распространенная схема М - Р дает возможность получать антикоррозионное и износостойкое покрытие, удовлетворяющее производственников во многих случаях. Гуммирование по схеме М - П применяют тогда, когда от защитной обкладки требуется более высокая химическая и тепловая стойкость, чем та, которой обладает мягкая резина, а износостойкость обкладки не имеет существенного значения. Здесь полуэбонитовый слой обеспечивает прочное сцепление комбинированной обкладки с металлом и создает дополнительный антикоррозионный барьер против жидкостей и газов, могущих проникнуть через верхнюю резиновую обкладку вследствие диффузии, пористости или дефектов в клеевых соединительных стыках. Гуммирование по схеме М - П - Э применяют для получения покрытий с особенно высокой химической стойкостью, например при изготовлении антикоррозионных обкладок из эбонита, стойкого к хлору. Защищенные такой неэластичной обкладкой аппараты нельзя хранить на морозе или эксплуатировать при резких температурных колебаниях или в условиях вибрации. В схеме М - Р - Э мягкая резина выполняет роль эластичного подслоя, который компенсирует большую разницу в значении коэффициента расширения металла и эбонита. Такие покрытия применяют в тех случаях, когда защитная обкладка, контактирующая с кислотами или другими агрессивными жидкостями, одновременно может подвергаться резко колеблющимся температурным или механическим нагрузкам. Гуммирование по схеме М - Э - Р гарантирует надежную защиту металла не только от коррозии, но и от износа в результате абразивной или гидроабразивной эрозии. [36]
Формирование покрытий из кремнийорганических олигоме-ров с большой концентрацией фенильных групп на эластичном подслое позволяет наряду с уменьшением внутренних напряжений в 2 - 3 раза повысить адгезию покрытий путем формирования в них упорядоченной структуры. Причина этого явления обусловлена тем, что структурные элементы подслоя из мелами-ноалкидного олигомера играют при этом роль центров струк-турообразования, а высокоэластические свойства подслоя обеспечивают релаксацию внутренних напряжений. Нанесение эластичного подслоя на подложку позволяет сформировать однородную и упорядоченную структуру также в покрытиях из расплавов кристаллических полимеров. При получении покрытий из расплавов полиэтилена низкого давления взаимодействие полимера с поверхностью подложки приводит к резкому замедлению подвижности структурных элементов, препятствуя формированию упорядоченной структуры в слоях покрытий, прилегающих к подложке ( рис. 3.2), в то время как в слоях, граничащих с воздухом, формируется упорядоченная структура ламелярного типа, образующая сетку. Покрытия с такой неоднородной структурой характеризуются высокими внутренними напряжениями, вызывающими их самопроизвольное отслаивание в процессе эксплуатации. Формирование однородной упорядоченной структуры и резкое понижение внутренних напряжений в системе наблюдаются при использовании в качестве подслоя покрытий с оптимальной толщиной, из эластомерных систем. При этом в слоях, граничащих с подслоем и воздухом, формируется сетчатая структура из ламелей, а внутренние напряжения понижаются до десятых долей мегапаскалей, что характерно для эластичного подслоя. [37]