Понятие - несобственный интеграл - Большая Энциклопедия Нефти и Газа, статья, страница 2
Дипломат - это человек, который посылает тебя к черту, но делает это таким образом, что ты отправляешься туда с чувством глубокого удовлетворения. Законы Мерфи (еще...)

Понятие - несобственный интеграл

Cтраница 2


Понятие кратного интеграла в смысле Римана определяется для измеримой, следовательно, ограниченной области. Если область неограничена, то при известных условиях можно ввести понятие несобственного интеграла.  [16]

Именно так вводилось понятие несобственного интеграла в гл. Мы видим, таким образом, что в случае существования первообразной для g ( x) понятие несобственного интеграла ничем не отличается от понятия интеграла от ограниченной функции.  [17]

Отсюда следует, что интеграл (1.45) не зависит ни от р, ни от ZQ. Формула (1.36), в силу которой интеграл по комплексной переменной представляет собой комплексное число, действительная и мнимая части которого являются криволинейными интегралами второго рода, а также соотношение (1.44) позволяют непосредственно перенести понятие несобственного интеграла от функции действительной переменной 1) на случай комплексной переменной.  [18]

Если интегрируемая функция непрерывна, то ее интегралы Римана и Лебега совпадают. Если функция имеет конечное число точек разрыва первого рода или бесконечное число отделимых друг от друга точек разрыва первого рода, то ее интеграл Лебега совпадает с несобственным интегралом Римана. Поскольку встречающиеся в настоящем учебном пособии функции исчерпываются указанными классами функций, под интегралом Лебега можно понимать интеграл Римана, дополненный понятием несобственного интеграла.  [19]

Если интегрируемая функция непрерывна, то ее интегралы Римана и Лебега совпадают. Если функция имеет конечное число точек разрыва первого рода или бесконечное число отделимых друг от друга точек разрыва первого рода, то ее интеграл Лебега совпадает с несобственным интегралом Римана. Поскольку встречающиеся на практике функции в основном исчерпываются указанными классами функций, под интегралом Лебега можно понимать интеграл Римана, дополненный понятием несобственного интеграла.  [20]



Страницы:      1    2