Cтраница 2
В предыдущей главе при рассмотрении динамики плоского движения абсолютно твердого тела, при котором ось вращения тела сохраняет перпендикулярное к плоскости движения направление, можно было довольствоваться простейшим понятием момента инерции тела относительно данной оси или оси, ей параллельной, как мер инертности тел а в его вращении вокруг оси. [16]
Полное и точное решение этой задачи Гюйгенсом ( 1673) явилось едва ли не первым случаем геометрического интегрирования, первым точным решением задачи по динамике твердого тела, первым введением понятия момента инерции и, безусловно, создало эпоху в развитии физико-математических наук. [17]
Полное и точное решение этой задачи Гюйгенсом ( 1673 г.) явилось едва ли не первым случаем геометрического интегрирования, первым точным решением задачи по динамике твердого тела, первым введением понятия момента инерции и, безусловно, создало эпоху в развитии физико-математических наук. [18]
В заключение мы должны сказать, что история понятий математического ожидания и дисперсии изучена совершенно недостаточно. Мы видим, что основы понятия математического ожидания возникли одновременно с понятием вероятности, но выделены основные его свойства были очень поздно - только во второй половине прошлого - начале нашего столетия. Неясно, в какой мере на понятие дисперсии влияло уже существовавшее понятие момента инерции. Впрочем, заслуживает внимания и исследование истории становления и развития теории случайных величин. То, что изложено в настоящей главе может считаться лишь первым приближением к истории этого важного раздела научных знаний. [19]