Cтраница 1
Процесс численного интегрирования осуществляется лучше в & по способу центрированных разностей [ 37, стр. [1]
Процесс численного интегрирования продолжается до момента, когда А - 1, что соответствует концу хода поршня. Однако в некоторых случаях она может стать отрицательной, например в конце хода поршня в полости выхлопа давление может подняться, образуется так называемая воздушная подушка. Следовательно, в период движения поршня необходимо проверять значения давления в обеих полостях в каждый момент времени и вносить в уравнения соответствующие изменения. [2]
Процесс численного интегрирования дифференциального уравнения ( 1) при наличии начального условия ( 2), использующий формулы ( 3) и ( 4), происходит следующим образом. [3]
Процесс численного интегрирования уравнений движения поршня продолжается до момента X 1, что соответствует концу его хода. [4]
Рунге показал, что главный член погрешности может быть определен в процессе численного интегрирования. [5]
Однако, как будет показано ниже, при достаточно больших значениях Ъ ( t, у) в процессе численного интегрирования обычными методами возникает осцилляция решения рассматриваемого уравнения с амплитудой, зависящей от шага интегрирования. В результате этого интегрирование систем подобных дифференциальных уравнений химической кинетики с помощью стандартных методов численного анализа практически невозможно. [6]
Указанные функции, определяющие углы фг и Ф2, многозначные; важно учитывать это свойство при выборе ветви в процессе численного интегрирования. [7]
Трудность построения вычислительных процедур в задачах, где время не фиксировано, связана с тем, что неизвестен момент окончания процесса численного интегрирования. Если априори известно, что одна из координат изменяется монотонно, и мы знаем ее конечное значение, то эта трудность легко преодолевается. [8]
В этом отношении системы уравнений (4.1.9) и (4.4.12) ведут себя совершенно одинаково и потому все сделанные ранее замечания об особенностях процесса численного интегрирования первой из этих систем остаются справедливыми и для второй. [9]
И если в задачах классической теории оболочек эти проявления умеренны и могут быть преодолены тем или иным способом ( параллельная пристрелка, дискретная ортогонализация и др. [97, 283]), то в неклассической теории, как это видно уже на примере уравнений (4.1.9), дело обстоит совершенно иначе: с появлением новых быстро переменных решений экспоненциального типа проявления неустойчивости приобретают взрывной характер, приводя к стремительному росту погрешности вычислений и исключая всякую возможность успешного завершения процесса численного интегрирования задач Коши. [10]
При расчетах на ЭВМ все расходные и термодинамические параметры газожидкостной смеси приводятся к давлению и температуре на входе в трубопровод. В процессе численного интегрирования по коротким участкам эти характеристики определяются по давлению и температуре каждого расчетного участка. [11]
При этом важно установить момент прекращения численного интегрирования для заданной совокупности значений hf1 ( VII212), поскольку оно становится бесполезным после того, как траектория достигла минимального расстояния до заданной конечной точки ( VII221) и это расстояние начинает увеличиваться. Поэтому в процессе численного интегрирования нужен контроль за степенью приближения получаемой траектории к заданной конечной точке. [12]
Для преодоления такого рода трудностей С. К. Годуновым [24] предложен метод ортогонализации. Суть метода состоит в том, что в процессе численного интегрирования ( например, на каждом шаге) делаются остановки, при которых восстанавливается линейная независимость решений. Существует несколько вариантов реализации этого метода. [13]
Процесс выполнения такой программы заключается в вычислении по значениям величин, характеризующих динамический процесс в предыдущий момент времени, новых значений этих величин, в последующий момент времени. Другими словами, в системной динамике способ имитации основан на процессе численного интегрирования систем обыкновенных дифференциальных уравнений по схеме Эйлера, подразумевающей разбиение отрезка интегрирования ( моделирования) на интервалы одинаковой длины. При этом интервал должен быть меньше любого запаздывания ( задержки во времени) в моделируемой системе. Таким образом, переменный уровень аппроксимируется кусочно-линейной функцией, т.е. считается, что между соседними точками уровень изменяется по линейному закону. [14]
Полученные уравнения нелинейны и не могут быть интегрированы аналитически, за исключением особых случаев [ уравнение 7.7 ( 4) ], но их можно интегрировать при помощи хорошо известных численных приемов. Процесс численного интегрирования позволяет изучить роль различных свойств жидкостей и пород при определении зависимости давление - нефтеотдача. Выбор функций, / t, e и щ во всех уравнениях представляет довольно трудоемкий процесс. Интегрирование поглощает много времени и вычислений. Поэтому рассмотрим иную методику, включающую лишь алгебраические уравнения. [15]