Cтраница 3
Сразу же конфигурацию потенциальных ям приводят к виду, показанному на рис. 4.6.1 в. Затем следует новый цикл. При повторении циклов заряд последовательно перемещается и воспринимается как изменяющийся во времени сигнал, несущий информацию об интенсивности и пространственном распределении излучения. [31]
В угольной дуге постоянного тока проба обычно испаряется из анода, так как в дуге, горящей на воздухе, температура анода выше. Прикатодный слой может обогащаться на порядок величины элементами с относительно низким потенциалом ионизации ( разд. Щелочные металлы или большие количества других элементов уменьшают температуру плазмы и снижают прикатодный эффект усиления. Благоприятное пространственное распределение излучения плазмы в прикатодном слое ( разд. Недостатки возбуждения в прикатодном слое обусловлены трудностями юстировки и слабым свечением прикатодного слоя. Кроме того, температура, близкая к температуре чистой угольной дуги, усиливает эмиссию ионных спектральных линий и циановых полос. Из-за указанных недостатков этот метод в практическом спектральном анализе применяется редко [1], хотя недавно неожиданно снова появился в литературе. [32]
Для анализа дифракционных эффектов необходимо учесть области нелинейного кристалла, волны от которых интерферируют не в фазе. Очевидно, достаточно ограничиться теми областями, для которых разброс фазы не превышает я. Последнее существенно упрощает задачу и позволяет в ряде случаев распространить установленную в приближении геометрической оптики аналогию с линейными системами на дифракционную теорию. Таким образом, задачи о пространственном распределении преобразованного излучения сводятся к рассмотренным в линейной оптике. [33]
К - коэффициент теплопроводности; А - количество тепла, выделяющееся в единице объема за единицу времени и зависящее от координат и времени. В частности, наиболее распространенным случаем пространственного распределения излучения является гауссов профиль. [34]