Cтраница 2
Швабе [44] подробно исследовал такое развитие течения около цилиндра. На рис. 15.6 изображены полученные им распределения давления для различных стадий разгона. Параметр d, характеризующий отдельные кривые, означает расстояние от цилиндра до критической точки, находящейся в свободном течении позади пары вихрей. Мы видим, что в начальной стадии течения измеренное распределение давления довольно близко к теоретическому потенциальному распределению, но при дальнейшем развитии течения все более и более от него отклоняется. [16]
В исследованиях первого класса используется такое же оборудование и методы испытаний, как в любой хорошо оснащенной лаборатории для исследования бескавитационных характеристик тех же гидросооружений. Гидросооружения имеют две отличительные особенности: течение со свободной поверхностью и большие размеры. Последнее обусловливает течение с большими числами Рейнольдса, соответствующими турбулентному режиму. Поскольку основными являются силы тяжести, моделирование осуществляется по числу Фруда. Поэтому масштаб модели должен быть большим, чтобы числа Рейнольдса по крайней мере были достаточны для турбулентного течения. Однако при таком методе моделирования обычных установок с атмосферным давлением на свободной поверхности на модели не возникает паровая кавитация, даже если в натуре она происходит интенсивно. Поэтому на модели невозможно определить возникновение кавитации, но о нем можно судить по измеренным распределениям давления. Такие измерения необходимо проводить на всех поверхностях, на которых могут быть низкие давления. В простых сооружениях большинство опасных зон известно. Тем не менее рекомендуется рассчитать значения числа кавитации Kf и числа Кг, соответствующего началу кавитации на стенках канала, по формулам (7.11) и (7.14) и воспользоваться методом, приведенным в разд. [17]