Другое распределение - Большая Энциклопедия Нефти и Газа, статья, страница 1
Хорошо не просто там, где нас нет, а где нас никогда и не было! Законы Мерфи (еще...)

Другое распределение

Cтраница 1


Другое распределение, связанное с показательным.  [1]

2 Гауссовское распределение вероятности со средним ( ж О. [2]

Многие другие распределения вероятности стремятся к гауссовской форме в определенном пределе. Покажем, например, что пуассоновское распределение стремится к гауссовскому при ( п) - сю.  [3]

Всякое другое распределение потенциалов на выходах вентилей В1 - Вв недействительно, поскольку приводит к расхождению с исходным состоянием основного триггера.  [4]

Использование других распределений вносит в методику испытаний усложнения; однако, чтобы получить из испытаний правильные выводы, необходимо решать возникающие при этом задачи ( см. гл.  [5]

Для других распределений способы приближенного преобразования случайных чисел на ЭВМ иные.  [6]

Для других распределений внешней скорости в общем случае получаются бесконечные ряды, члены которых, как правило, быстро уменьшаются, и в большинстве практических случаев ряд быстро сходится. В качестве примера следовало бы привести отрицательную степень ( возрастание давления) / п - 0 09 или р - 0 199, что имеет место непосредственно у границы отрыва потока.  [7]

При других распределениях плотности вероятностей погрешность зависит от вероятности.  [8]

Возможны и другие распределения переменных на зависимые и независимые, : хотя в практике расчетов они встречаются нечасто. Например, , предлагаемые алгоритмы могут быть использованы для рас - чета констант фазового равновесия, требуемых при расчете однократного испарения. Одним словом, исходя из конкретной постановки задачи, исследователь должен сам выбрать ту или иную методику расчета.  [9]

Возможны и другие распределения. Такие распределения называются пространственными, причем подразумевается не обычное, а фазовое пространство.  [10]

Для всякого другого распределения усилий распределение напряжений на концах стержня будет отличаться от того, которое дает решение ( 59), однако в силу принципа Сен-Венана на большом расстоянии от концов решение остается справедливым.  [11]

Для всякого другого распределения усилий распределение напряжений на концах стержня будет отличаться от того, которое дает решение ( 59), однако в силу принципа Сен-Венана на большом расстоянии от концов решение остается справедливым.  [12]

Возможны также многие другие распределения, кроме устанавливаемых теоремой 9, но еще не найдены простые критерии для их описания.  [13]

Зельдович, приняв другое распределение для адсорбционных мест, вывел также для средних заполнений ранее найденное эмпирически уравнение Фрейндлиха: Г йс1 / п, где k и п - постоянные.  [14]

Могут использоваться и другие распределения.  [15]



Страницы:      1    2    3