Cтраница 2
В этом случае при любых возмущениях расходов фаз на входе в аппарат расход сплошной фазы на стоке будет с помощью регулирующего клапана практически мгновенно принимать такое значение, чтобы общий объем смеси в рабочей зоне аппарата, а следовательно, и уровень поверхности раздела фаз оставались неизменными. [16]
Схема системы скважина - поглощающий пласт. [17] |
Ниже описан графоаналитический метод, позволяющий вручную вычислять расходы фаз. При этом последовательность действий следующая. [18]
Соотношения между коэффициентами массоотдачи при различных единицах измерения движущей силы и потока распределяемого компонента. [19] |
При вычислении интегралов могут быть учтены и изменение расходов фаз, и зависимость коэффициентов массопереноса от концентраций. [20]
Уравнения (3.48) - (3.56) являются строгими при постоянстве расходов фаз и линейности равновесия. В пределах одной ступени, как правило, изменение расходов фаз и наклона линии равновесия невелико. [21]
К определению локальной эффективности тарелки. [22] |
Уравнения (III.45) и (111.46) являются строгими при постоянстве расходов фаз и линейности лини равновесия. [23]
При составлении математического описания были сделаны традиционные допущения, что расходы фаз, удерживающая способность колонны и коэффициент массопередачи постоянны. [24]
Тангенс угла наклона рабочей линии к оси абсцисс равен отношению весовых расходов фаз. Следует отметить, что форма рабочей линии зависит от единиц, в которых выражаются концентрации материального баланса. Выбор в качестве таких единиц относительных молярных концентраций, которые основываются на неизменных количествах растворителей, позволил получить рабочую линию в виде прямой. [25]
В последнее время проводятся интересные работы по созданию устройств измерения расходов фаз скважинного потока, не требующих специальных сепарирующих устройств. [26]
Тогда доля объемного расхода парогазовой смеси и жидкого бензина: соответствующие доли-массовых расходов фаз наоборот: 7 46 % и 92 54 %, то есть по массовому расходу жидкая фаза преобладает. [27]
Зависимость движущей силы и силы сопротивления от объемной концентрации дисперсной фазы. [28] |
Соотношения (2.82) и (2.83) при ч у к дают критические значения расходов фаз. [29]
Это означает, что при малых изменениях коэффициентов дифференциального уравнения ( расходов фаз) изменяются основные свойства этого процесса. В нашем конкретном случае исчезает свойство иметь установившееся состояние движения частиц при заданных расходах фаз. Для того чтобы перейти в новое установившееся состояние, необходимо изменить один из расходов, а это в свою очередь приводит к нарушению принятого условия стационарности идеального процесса, описываемого динамической системой. [30]