Антиавтоморфизм - Большая Энциклопедия Нефти и Газа, статья, страница 2
Правила Гольденштерна. Всегда нанимай богатого адвоката. Никогда не покупай у богатого продавца. Законы Мерфи (еще...)

Антиавтоморфизм

Cтраница 2


Можно доказать, что если КР3 ( или КР2) обладает антиавтоморфизмом, то антиавтоморфизмом обладает и тело К.  [16]

Обозначим через Ж пространство эрмитовых 3 X 3-матриц Кэли, определенных этим антиавтоморфизмом.  [17]

Показать, что у любой конечной группы, имеющей более двух элементов, имеется нетривиальный антиавтоморфизм. Разрешается пользоваться основной теоремой об абелевых группах.  [18]

Показать, что моноид пп всех функций /: п - п не имеет нетривиальных антиавтоморфизмов.  [19]

Можно доказать, что если КР3 ( или КР2) обладает антиавтоморфизмом, то антиавтоморфизмом обладает и тело К.  [20]

Свои исследования мы начинали со следующего вопроса: существует ли конечная полугруппа, одновременно допускающая нетривиальные антиавтоморфизмы и не допускающая нетривиальные инволюции. Вначале необходимо было выбрать одну из альтернатив: можно было использовать программу для попытки доказать теорему о том, что таких полугрупп не существует, и можно было попытаться опровергнуть это утверждение, построив контрпример в виде модели.  [21]

Гомоморфизм, изоморфизм, антигомоморфизм и антиизоморфизм решетки L в себя называется эндоморфизмом, автоморфизмом, антиэндоморфизмом и антиавтоморфизмом соответственно.  [22]

Конечно, для программы оставалось еще много работы, например: проверка ассоциативности, проверка того, остается ли h антиавтоморфизмом, проверка отсутствия инволюций.  [23]

Поскольку наличие антиавтоморфизма и / или инволюции зависит от определенного типа симметрии, вначале сделать исследуемую структуру максимально симметричной, чтобы разрешить антиавтоморфизмы, а затем ограничивать симметрию, чтобы исключить инволюции.  [24]

Базис устойчив относительно симметрии ( С () - линейного антиавтоморфизма) E - EL. Этот антиавтоморфизм разворачивает все произведения в обратном порядке, но все образующие оставляет на месте. Из устойчивости относительно этой симметрии следует, например, что пространство Uq ( n) Ef тоже порождено частью базиса.  [25]

На peujeTKe локально замкнутых пространств из &-к отображение F-У F обращает порядок и инволютивно ( так как F lcF F), а следовательно, биективно. Поэтому оно является решеточным антиавтоморфизмом.  [26]

Антиавтоморфизм нетривиален, если он не является тождественным. Нетривиальная инволюция - это нетривиальный антиавтоморфизм, квадрат которого тождествен.  [27]

По определению J есть антиавтоморфизм периода два алгебры ЭД. Множество S ( ЭД, У) У-кососимметричных элементов ( а - - а) есть подмножество неподвижных элементов относительно автоморфизма - J. Антиавтоморфизм J индуцирует автоморфизм в центре d алгебры, который либо тождествен, либо периода два.  [28]

В частности, предположим, что Д Г - алгебраически замкнутое поле. Поскольку Д Г, единственным антиавтоморфизмом Д как алгебры над Г является тождественное отображение.  [29]

Рассмотрим вопрос о симметричности - оператора ( й при унитарном представлении группы G-0 t в частности, при квантовании на орбитах. С этой целью введем обозначение для антиавтоморфизма обертывающей алгебры М ХШ)), равного - id най ( най0) в унитарном представлении ему соответствует сопряжение.  [30]



Страницы:      1    2    3    4