Аксиома - параллельность - Большая Энциклопедия Нефти и Газа, статья, страница 4
Если ты споришь с идиотом, вероятно тоже самое делает и он. Законы Мерфи (еще...)

Аксиома - параллельность

Cтраница 4


Учение о двугранных и многогранных углах принадлежит абсолютной геометрии, несмотря на то что соответствующие доказательства прямо или косвенно основываются у Евклида и обычно в наших учебниках на евклидовой аксиоме параллельности. Существуют и другие доказательства.  [46]

Лежандр, так же как Гаусс, Лобачевский и Бояи, беспрестанно занимался теорией параллельных, но в отличие от них не пришел к дерзкой мысли о возможности построения непротиворечивой геометрии, основанной на отрицании аксиомы параллельности, а до конца жизни не оставлял попыток найти доказательство пятого постулата Евклида. В каждом почти издании своих начал геометрии Лежандр помещал новое доказательство евклидова постулата, но внимательный анализ показывал, что оно опиралось на совершенно очевидное, явно не высказанное предположение, которое эквивалентно пятому постулату.  [47]

В другой работе Н. А. Глаголев [13] дает новую концепцию аксиом первой группы геометрии Евклида, сущность которой состоит в том, что аксиомам первой группы предпосылаются аксиомы принадлежности, введенные автором ранее для проективной геометрии; далее к этой же группе присоединяется аксиома параллельности в усиленной форме; в результате получается система проще гильбертовой системы, причем даже требование Розенталя о существовании одной точки на прямой ( вместо двух у Гильберта) становится излишним.  [48]



Страницы:      1    2    3    4