Аксиома - выбор - Большая Энциклопедия Нефти и Газа, статья, страница 3
Если вы считаете, что никому до вас нет дела, попробуйте пропустить парочку платежей за квартиру. Законы Мерфи (еще...)

Аксиома - выбор

Cтраница 3


Важными следствиями из аксиомы выбора являются лемма Цорна и теорема о том, что каждое множество можно вполне упорядочить.  [31]

Что же касается аксиомы выбора для конструктивных функций 5.6, то она может и не выполняться в нашей простой модели.  [32]

Таким образом, аксиома выбора не зависит от остальных аксиом теории множеств, и может быть принята как еще одна аксиома нашей теории. Но поскольку она встречает неодобрение многих математиков ( в особенности с появлением в последнее время не менее привлекательной аксиомы детерминированности AD, противоречащей АС), мы не будем рассматривать ее как еще одну аксиому ZF, а для теории ZF AC введем специальное обозначение ZFC. Следуя Куратовскому [9], все утверждения, которые мы будем доказывать в рамках теории ZFC, мы будем отмечать знаком, выставляя его перед ключевым словом утверждения, например, Теорема.  [33]

В отличие от аксиомы зависимого выбора это второе утверждение может быть доказано ( в теории множеств) без каких-либо дополнительных предположений.  [34]

Эта ослабленная форма аксиомы выбора обозначается АС0. Счетная аксиома выбора достаточно сильна, чтобы на ее основе получить доказательства сформулированных выше утверждений 1, 2, 3 и теоремы о счетной аддитивности меры Лебега. Однако специалисты по теории множеств предпочитают иметь, дело с более сильной счетной формой аксиомы выбора, постулирующей существование функции выбора в случае, когда множество, из которого требуется сделать очередной выбор, зависит от результатов уже совершенных выборов. Речь идет о следующей аксиоме.  [35]

Это известный эквивалент аксиомы выбора ( Рабины [ 1, с. Бернштейну удается доказать данную импликацию ( с.  [36]

Лемма Цорна эквивалентна аксиоме выбора и потому может рассматриваться как одна из аксиом теории множеств.  [37]

Теорема Цорна эквивалентна аксиоме выбора Цермело, которая постулирует для любой системы непересекающихся множеств Xi i.i существование такого множества С, что Xi П С Vi Е /, состоящего ровно из одного элемента. Аксиома Цермело и теорема Цорна эквивалентны теореме Цермело о существовании вполне упорядоченной структуры на любом заданном множестве.  [38]

Теорема Цорна эквивалентна аксиоме выбора Цермело, которая постулирует для любой системы непересекающихся множеств Xi i& i существование такого множества С, что JQ П С / г I, состоящего ровно из одного элемента. Аксиома Цермело и теорема Цорна эквивалентны теореме Цермело о существовании вполне упорядоченной структуры на любом заданном множестве.  [39]

В главе, посвященной аксиоме выбора, моей книги Lefons sur Jes nombres transfinis, появившейся десять лет назад49, я указал мнения многих идеалистов и эмпиристов относительно понятий существования и множеетва.  [40]

Следующее утверждение называется аксиомой выбора.  [41]

Покажем, что из аксиомы выбора вытекает теорема Цермело.  [42]

Заметим, что без аксиомы выбора утверждение о несуществовании наибольшего кардинала или равносильное утверждение о том, что Card - не множество, вообще говоря не доказуемы.  [43]

Посмотрим, как используется аксиома выбора в доказательствах этих трех утверждений.  [44]

Рассмотренные выше возражения против аксиомы выбора носили в некотором смысле внематематический характер. В 1907 г. Лебег [ 10J задался целью показать, что принятие аксиомы выбора приводит к неприемлемым ( по крайней мере для него) математическим результатам.  [45]



Страницы:      1    2    3    4