Cтраница 1
Капиллярный контроль должен производиться в соответствии с ГОСТ 18442, магнитопорошковый - с ГОСТ 21105 и методиками контроля, согласованными с Госгортехнадзором России. [1]
Капиллярный контроль должен проводиться в соответствии с ГОСТ 18442, магнитопорошковый - с ГОСТ 21105 и методиками контроля, согласованными с Госгортехнадзором России. [2]
Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой по ГОСТ 21105 - 75 чувствительности маг-нитопорошковым методом или магни-топорошковый метод контроля не допускается применять по условиям эксплуатации объекта. [3]
Схемы просвечивания сварных конструкций.| К выбору источников излучения в промышленной радиографии. [4] |
Капиллярный контроль применяют для обнаружения дефектов, выходящих на поверхность. При контроле сварных соединений обследуют сварной шов и околошовную зону. [5]
Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или магни-топорошковый метод контроля не допускается применять по условиям эксплуатации объекта. [6]
Капиллярный контроль применяется также при те-чеискании и, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации. [7]
Капиллярный контроль должен производиться в соответствии с ГОСТ 18442, магнитопорошковый - с ГОСТ 21105 и методиками контроля, согласованными с Госгортехнадзором России. [8]
Капиллярный контроль осуществляется путем нанесения жидких проникающих веществ, называемых пештрантами, их проникновения в полости поверхностных и сквозных дефектов и регистрации образующихся на поверхности объекта контроля: индикаторных следов. Важнейшим свойством пенетрантов является их способность к смачиванию материала объекта контроля. Явление смачивания вызывается силами взаимного притяжения атомов или молекул жидкости либо твердого тела. Молекулы, находящиеся внутри однородного вещества, испытывают одинаковое притяжение с разных сторон и находятся в состоянии равновесия. Молекулы, находящиеся на поверхности, испытывают разные притяжения с внутренней и наружной стороны, граничащей с поверхностью среды. Равновесие при этом достигается при минимуме свободной энергии молекул на поверхности. В связи с этим они стремятся приобрести форму с минимальной наружной поверхностью. В твердом теле этому препятствуют явления упругости формы, а жидкость в невесомости под влиянием этого явления приобретает форму шара. [9]
Капиллярный контроль должен производиться в соответствии с ГОСТ 18442, магнитопорошковый - с ГОСТ 21105 и методиками контроля, согласованными с Госгортехнадзором России. [10]
Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и местоположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта. [11]
Капиллярный контроль должен проводиться в соответствии с ГОСТ 18442, магнитопорошковый - с ГОСТ 21105 и методиками контроля, согласованными с Госгортехнадзором России. [12]
Капиллярный контроль осуществляется путем нанесения жидких проникающих веществ, называемых пенетрантами, их проникновения в полости поверхностных и сквозных дефектов и регистрации образующихся на поверхности объекта контроля индикаторных следов. Важнейшим свойством пенетрантов является их способность к смачиванию материала объекта контроля. Явление смачивания вызывается силами взаимного притяжения атомов или молекул жидкости либо твердого тела. Молекулы, находящиеся внутри однородного вещества, испытывают одинаковое притяжение с разных сторон и находятся в состоянии равновесия. Молекулы, находящиеся на поверхности, испытывают разные притяжения с внутренней и наружной стороны, граничащей с поверхностью среды. Равновесие при этом достигается при минимуме свободной энергии молекул на поверхности. В связи с этим они стремятся приобрести форму с минимальной наружной поверхностью. В твердом теле этому препятствуют явления упругости формы, а жидкость в невесомости под влиянием этого явления приобретает форму шара. [13]
Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или магни-топорошковый метод контроля не допускается применять по условиям эксплуатации объекта. [14]
Капиллярный контроль применяется также при те-чеискании и, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации. [15]