Cтраница 3
Тренд рассматривается здесь как непрерывная функция от времени, годовая компонента является дискретной функцией от времени, которая накладывается на тренд, остаточная компонента по гипотезе является случайным стационарным процессом. Из-за разнообразия методов прогнозирования временных рядов, трендовых моделей ( аддитивных, мультипликативных, смешанных), критериев выбора оптимальных показателей возникает необходимость комбинации прогнозов, учитывающих специфику различных методов прогнозирования. [31]
Выше были рассмотрены методы прогнозирования с помощью приемов регрессии при изучении причинно-следственных связей между показателями. Метод регрессии применяется также при прогнозировании временных рядов, исходя из прошлых, исторических данных. [32]
В случае отсутствия реального временного ряда используется его моделирование, применяя эту модель для обучения НС. Качество моделирования временного ряда с помощью НС в этом случае во многом определяется достоверностью выбранной модели. Однако, в общем случае, применение нейронных сетей для прогнозирования временных рядов не предполагает знание ( или определение) модели тренда и ( или) сезонной составляющей. [33]