Процесс - кислородно-флюсовая резка - Большая Энциклопедия Нефти и Газа, статья, страница 3
Воспитанный мужчина не сделает замечания женщине, плохо несущей шпалу. Законы Мерфи (еще...)

Процесс - кислородно-флюсовая резка

Cтраница 3


31 Схема установки УРХС. [31]

При помощи этих установок можно также резать некоторые цветные металлы: медь, латунь, алюминий и другие. Процесс кислородно-флюсовой резки цветных металлов протекает так же, как процесс резки нержавеющей стали.  [32]

Стали аустенитного и ферритного класса перед резкой не подвергаются подогреву, а стали мартенситного класса подогреваются до 250 - 350 С. Высоколегированные стали обладают низкой теплопроводностью, а процесс кислородно-флюсовой резки вызывает интенсивное тепловое воздействие на разрезаемый металл, так как одновременно с кислородом вводится железный порошок, который, сгорая, выделяет дополнительное тепло. В результате низкой теплопроводности и большого выделения тепла в зоне реза в металле возникают большие внутренние напряжения, которые приводят к образованию деформаций разрезаемых листов, а при жестком закреплении - трещин.  [33]

Стали аустенитного и ферритного класса перед резкой не подвергают подогреву, а стали мартенситного класса подогревают до 250 - 350 С. Высоколегированные стали обладают низкой теплопроводностью, а процесс кислородно-флюсовой резки вызывает интенсивное тепловое воздействие на разрезаемый металл, так как одновременно с кислородом вводится железный порошок, который, сгорая, выделяет дополнительное тепло. В результате низкой теплопроводности и большого выделения тепла в зоне реза в металле возникают большие внутренние напряжения, которые приводят к образованию деформаций разрезаемых листов, а при жестком закреплении - трещин.  [34]

Стали аустенитного и ферритного класса перед резкой не подвергают подогреву, а стали мартенситного класса подогревают до 250 - 300 С. Высоколегированные стали обладают низкой теплопроводностью, а процесс кислородно-флюсовой резки вызывает интенсивное тепловое воздействие на разрезаемый металл, так как одновременно с кислородом вводится железный порошок, который, сгорая, выделяет дополнительную теплоту. В результате низкой теплопроводности и большого выделения теплоты в зоне реза в металле возникают большие внутренние напряжения, которые приводят к образованию деформаций разрезаемых листов, а при жестком закреплении - трещин.  [35]

Для резки железобетона применяют ручные и, машинные резаки, работающие по схеме с внешней подачей флюса. Флюс к резаку подается сжатым воздухом или азотом. Для обеспечения цилиндричности кислородной струи применяют цилиндрические и конусные сопла, сужающиеся книзу. Процесс кислородно-флюсовой резки железобетона мало отличается от кислородно-флюсовой резки высоколегированных сталей, чугуна и цветных металлов. При резке железобетона также применяют подогревающее пламя, а порошкообразный флюс вдувается в режущую струю кислорода. На окисление вводимого в зону резки флюса расходуется 15 - 20 % кислорода, а на удаление из полости реза расплавленных материалов и шлаков - 80 - 85 % кислорода. При кислородно-флюсовой резке железобетона применяют флюс, состоящий - из 75 - 85 % железного порошка и 25 - 15 % алюминия.  [36]

Обычная аппаратура, как правило, рассчитана на резку стали толщиной до 100 мм. Однако при резке стали толщиной более 100 - 150 мм уже появляются значительные затруднения. Резка стали та ких толщин применяется в основном в металлургической промышленности и на некоторых предприятиях тяжелого машиностроения при отрезке прибылей. Кроме того, использование процесса кислородно-флюсовой резки позволило заводу сократить транспортные расходы, вызванные перевозкой лопастей. Отрезка кольцевых прибылей с наружным диаметром 520 мм и внутренним диаметром 260 мм производится за 20 мин. Расход флюса составляет 4 - 6 кг.  [37]

Резак относительно разрезаемого металла должен перемещаться равномерно, по окончании процесса резак необходимо задержать, чтобы прорезать металл по всей его толщине. При прямолинейной разделительной резке резак устанавливают или перпендикулярно поверхности металла, или углом вперед. При кислородно-флюсовой резке высоколегированных сталей давление кислорода выбирается так же, как и для обычной резки. Расход кислорода складывается из расхода кислорода на окисление разрезаемого металла и флюса и выдувание образующихся в процессе резки оксидов. Расход кислорода и его давление определяются в зависимости от толщины разрезаемого металла и скорости резки. Процесс кислородно-флюсовой резки будет проходить устойчиво только тогда, когда скорость перемещения резака будет согласована с количеством подаваемого в зону реза кислорода и флюса. Ширина реза зависит от диаметра выходного отверстия внутреннего мундштука для режущего кислорода, давления режущего кислорода и скорости резки.  [38]

Режущая насадка также должна быть на один номер больше. Резку начинают от края листа или от заранее сделанного отверстия. Начало реза предварительно нагревают до температуры белого каления. После этого на половину оборота открывают вентиль режущего кислорода, включая одновременно подачу кислородно-флюсовой смеси. Когда расплавленный шлак дойдет до нижней кромки разрезаемого изделия, резак начинают передвигать вдоль линии реза, а вентиль подачи режущего кислорода открывают полностью. Перед резкой стали мартенситного класса ее подогревают до 250 - 350 С, а для сталей ферритного и аустенитного классов подогрев не требуется. При прямолинейной разделительной резке высоколегированных сталей резак устанавливают перпендикулярно поверхности металла или под углом. На процесс кислородно-флюсовой резки влияет правильный выбор давления и расхода режущего кислорода, мощность подогревающего пламени, скорость резки, марка и расход флюса. Расход кислорода и его давление определяются в зависимости от толщины разрезаемого металла и скорости резки. Оптимальный расход флюса устанавливают визуально. Большой или недостаточный расход флюса замедляет процесс резки. Стабильный процесс резки возможен в том случае, если скорость перемещения резака соответствует количеству подаваемых в зону реза кислорода и флюса. Ширина реза зависит от толщины разрезаемого металла.  [39]



Страницы:      1    2    3