Cтраница 1
Рассмотрение молекул как материальных точек, не имеющих размеров, является, конечно, сильным упрощением. Мы получим более правильную картину, если будем приписывать молекулам определен ный объем и рассматривать их как упругие шары конечного радиуса г, который мы назовем газокинетическим радиусом молекулярного действия. Рассмотрим теперь столкновения, происходящие между молекулами. Если представить себе, что все молекулы покоятся, за исключением одной, то легко подсчитать число столкновений, испытываемое ею в среднем. Сфера радиуса D, внутри которой не может лежать центр второй молекулы, называется сферой покрытия молекулы. [1]
Рассмотрение молекулы как жесткого ротатора является приближением, пригодным лишь при относительно медленном вращении. При быстром вращении изменяется распределение масс в молекуле, что приводит к изменению моментов инерция. [2]
Рассмотрение молекулы как жесткого ротатора является приближением, пригодным лишь при относительно медленном вращении. При быстром вращении изменяется распределение масс в молекуле, что приводит к изменению - моментов инерции. [3]
Рассмотрение молекул бензола, кубана и карборана показывает, что в циклических и каркасных структурах наряду с ближними ( локализованными) взаимодействиями существуют взаимодействия, при которых распределенная внутри кольца или многогранника часть электронного облака молекулы выступает как общая связующая область для многих ядер молекулы. Иными словами, в некоторых таких системах помимо локализованных связей можно выделить еще распределенные, которые нельзя представить как сумму локализованных связей. [5]
Ограничимся рассмотрением молекул этого типа и обсудим эффективное взаимодействие между ними в фазе В. Взаимодействие между жесткими частями внутри одного и того же слоя должно быть сильным и приводить к двумерному упорядочению. Взаимодействие между соседними слоями можно разбить на усредненное значение, дающее общее притяжение между слоями, и пространственно-модулированную часть, стремящуюся стабилизировать определенное трехмерное упорядочение соседних слоев. [6]
Закончив рассмотрение древообразных молекул, перейдем теперь к описанию полимеров с циклическими фрагментами. [7]
Продолжим рассмотрение молекулы воды и определим симметрию ее валентных колебаний. В молекуле воды имеются две связи О - Н, поэтому базис будет состоять из изменения длин этих связей. [8]
Недостаток рассмотрения молекул как жестких палочек следует из весьма наглядных экспериментов по зондированию СЖК с помощью спиновых меток. Если метка прикреплена к ароматическому скелету молекулы, степень ее упорядоченности оказывается большой. [9]
При рассмотрении молекулы X2Y4 ( точечная группа V /) Сезерланд и Деннисон применили метод, который кажется нам весьма многообещающим также и для других случаен. [10]
При рассмотрении молекул, содержащих продолженную систему сопряженных связей, необходимо иметь в виду, что в то время как передача индуктивного влияния происходит по цепи с постепенным затуханием, влияние групп при сопряжении передается, по-видимому, лишь с незначительным затуханием. [11]
При рассмотрении молекулы методами квантовой механики полярные эффекты учитываются автоматически. Однако в связи с трудностями такого подхода для подобных молекул были выполнены лишь весьма приближенные квантовомеханические расчеты [114], в действительности эти системы значительно более широко исследовались классическими методами [90, 115 - 119] в приближении диполь-дипольного взаимодействия. При этом возникает электростатическое отталкивание, в результате которого е стремится перейти в Та. Это взаимодействие значительно, однако оно уменьшается по мере увеличения полярности растворителя, в котором растворено вещество ( разд. [12]
При рассмотрении молекул собственно производных пиперидина, которое уже начато с описанной выше структуры I, следует отметить, что в них зачастую атом Н при атоме N замещен на какой-либо атом или функциональную группу. [13]
При рассмотрении молекул, которые имеют анизотропный g - тензор, в частности неорганических радикалов и комплексов переходных металлов, теория становится значительно более сложной, но вместе с тем можно получить и гораздо больше информации об электронной структуре. Если молекула обладает как спиновым, так и орбитальным угловыми моментами, то g - тензор анизотропен. Итак, приняв, что спиновый гамильтониан определен точно, рассмотрим экспериментальные способы определения главных компонент - тензора. [14]
МО молекулы Н О. [15] |