Приближенное значение - интеграл - Большая Энциклопедия Нефти и Газа, статья, страница 1
Чем меньше женщина собирается на себя одеть, тем больше времени ей для этого потребуется. Законы Мерфи (еще...)

Приближенное значение - интеграл

Cтраница 1


Приближенное значение интеграла вычислим следующим образом.  [1]

Здесь сумма должна давать приближенное значение интеграла, а Rn ( f) есть погрешность этого значения.  [2]

Первый член справа даст приближенное значение интеграла, а остальные остаточный член.  [3]

Несмотря на это различие, приближенные значения интегралов в соответствии с (1.1.5) и (1.2.7) формально совпадают. Такое совпадение отнюдь не случайно, а является результатом глубокой взаимосвязи методов Лапласа и стационарной фазы. Рассмотрению этой взаимосвязи посвящен следующий раздел.  [4]

При этом 52к принимается как приближенное значение интеграла.  [5]

При этом J2ft принимается за приближенное значение интеграла.  [6]

Мы видим, что полученное здесь приближенное значение интеграла значительно лучше того, которое ранее было получено с помощью формул прямоугольников.  [7]

Величина Е характеризует абсолютную погрешность приближенного значения интеграла, если оно меньше единицы, и относительную в противном случае. Возможны случаи, когда пользователь задаст слишком большую точность, которая не может быть достигнута для данной подынтегральной функции.  [8]

Любая формула интегрирования позволяет вычислить лишь приближенное значение интеграла.  [9]

Видно, что уже при N 80 приближенное значение интеграла имеет 6 точных значащих цифр.  [10]

При наличии нескольких седловых точек вдоль контура Ps приближенное значение интеграла определяется суммой вкладов по окрестностям этих точек.  [11]

Типичным для практики является требование малости относительной погрешности приближенного значения интеграла, что в данном случае означает требование малости величины i / - D ( /) / ( 7 ( /) л / JV) - Статистика реально предъявляемых к вычислению интегралов показывает, что величина fE) ( j j / ( /) имеет тенденцию к резкому росту с ростом размерности интегралов.  [12]

Квадратурной формулой ( 2) пользуются для уточнения приближенного значения интеграла, полученного с помощью квадратурной формулы ( 1), при этом значения подиитегральной функции в узлах формулы ( 1) уже вычислены, так что необходимо вычислить ее значения лишь в JV - - 1 дополнительных узлах. Квадратурная формула ( 2) представляет собой также наивысшей алгебраич. У - - ж2, у к-рой фиксированными узлами являются концы промежутка [-1, 1] и, следовательно, остальные узлы суть корни ортогонального относительно промежутка [-1,1] и веса Y l - x2 многочлена степени 27V - 1 - многочлена Чебыгаева U2w - i ( x) 2-го рода.  [13]

Здесь столбцы xk и yk представляют искомую таблицу приближенных значений интеграла данного уравнения; остальные столбцы - вспомогательные.  [14]

Метод Монте-Карло и другие способы интегрирования, подобные рассматриваемому, где приближенное значение интеграла зависит от некоторых случайных параметров, называют недетерминированными.  [15]



Страницы:      1    2    3    4