Сила - ток - насыщение - Большая Энциклопедия Нефти и Газа, статья, страница 1
Если у тебя прекрасная жена, офигительная любовница, крутая тачка, нет проблем с властями и налоговыми службами, а когда ты выходишь на улицу всегда светит солнце и прохожие тебе улыбаются - скажи НЕТ наркотикам. Законы Мерфи (еще...)

Сила - ток - насыщение

Cтраница 1


Сила тока насыщения, как видно из формулы, численно равна заряду ионов одного знака, образующемуся иод действием ионизатора между обкладками конденсатора за единицу времени.  [1]

Сила тока насыщения оказалась строго пропорциональной световому потоку.  [2]

Сила тока насыщения равна заряду ионов, образуемых ионизатором за секунду в объеме газоразрядной трубки.  [3]

Найти силу тока насыщения между пластинами конденсатора, если под действием ионизатора в каждом кубическом сантиметре пространства между пластинами конденсатора образуется я 108 пар ионов, каждый из которых несет один элементарный заряд.  [4]

Найти силу тока насыщения в ионизационной камере, площадь электродов которой 100 см2, а расстояние между ними 6 2 см. Ионизатор образует в 1 см3 камеры ежесекундно 109 одновалентных ионов каждого знака.  [5]

Значит, сила тока насыщения / NSdq, где q - заряд одного иона.  [6]

Как изменится сила тока насыщения, если при неизменном действии ионизатора сблизить пластины.  [7]

Таким образом, сила тока насыщения очень сильно зависит от работы выхода и температуры, поскольку эти величины входят в экспоненту. Одновременно желательно, чтобы их работа выхода была как можно меньше. Например, чистый вольфрам, работа выхода которого 4 5 эВ, должен эксплуатироваться при температуре 2500 К. Затем катод активируется при пропускании через него термоионного тока при температуре катода около 1300 К. В результате образуется моноатомный слой щелочноземельных атомов, значительно понижающий работу выхода. Например, бариево-стронци-евые оксидные катоды имеют работу выхода около 1 8 эВ, благодаря чему значительные токи удается получить уже при температуре около 1100 К. Слой бариево-стронциевого окисла наносится обычно на никелевую трубку, внутри которой в качестве нагревателя используется вольфрамовая нить. Такая конструкция имеет дополнительное преимущество по сравнению с использованием нагретой вольфрамовой нити в качестве катода, поскольку в последнем случае вдоль нити возникает значительное падение потенциала и ее поверхность не будет эквипотенциальной. В оксидном катоде слой окислов является эквипотенциальной поверхностью, что улучшает весьма существенно условия работы катода в целом.  [8]

При изменении интенсивности света сила тока насыщения / н также изменяется, но, как показали опыты, задерживающее напряжение U3 остается неизменным. С точки зрения волновых представлений о свете этот факт необъясним. Ведь чем больше интенсивность света, тем большие силы действуют на электроны в освещенном металле и тем большая энергия должна, казалось бы, передаваться светом электронам.  [9]

С увеличением температуры катода сила тока насыщения быстро возрастает.  [10]

11 Зависимость анодного тока / д от разности. [11]

Опыты показывают, что сила тока насыщения возрастает чрезвычайно быстро с увеличением температуры катода.  [12]

Опыты показали, что п Ж и сила тока насыщения очень быстро возрастают с увеличением температуры катода.  [13]

14 Зависимость анодного тока / д от разности. [14]

На основании сказанного можно считать, что сила тока насыщения / н численно равна заряду всех электронов, испускаемых в единицу времени данным катодом при данной температуре.  [15]



Страницы:      1    2    3    4