Вопрос - сходимость - Большая Энциклопедия Нефти и Газа, статья, страница 2
Дипломат - это человек, который посылает тебя к черту, но делает это таким образом, что ты отправляешься туда с чувством глубокого удовлетворения. Законы Мерфи (еще...)

Вопрос - сходимость

Cтраница 2


Помимо вопросов сходимости функция и постоянная Лебега связаны еще с одним вопросом теории интерполяции.  [16]

Рассмотрение вопроса сходимости такого метода припасовывания [3] показывает, что в достаточной малой окрестности точки 0 метод замороженной переходной функции всегда дает более точный результат, чем метод замороженных коэффициентов. Причем метод замороженной переходной функции в достаточно малой окрестности точки tQ сколь угодно точнее метода замороженных коэффициентов.  [17]

Обсуждение вопросов сходимости, а также блок-схему алгоритма читатель может найти в предыдущем разделе.  [18]

Помимо вопросов глобальной сходимости, полиномиальная интерполяция имеет и другие недостатки. Время построения и вычисления интерполяционных полиномов высокой степени может для некоторых приложений оказаться чрезмерным. Полиномы высокой степени могут приводить также к трудным проблемам, связанным с ошибками округлений.  [19]

Исследование вопросов сходимости функций распределения к нормальному закону не окончились и в наши дни, но теперь исследуются другие вопросы: быстрота сходимости к предельному распределению, сходимость случайного числа случайных слагаемых, суммирование неравномерно малых случайных величин.  [20]

Помимо вопросов сходимости ортогональных рядов, Д. Е. Меньшов занимался вопросами суммируемости этих рядов процессами Чезаро и общими процессами Теплица, а также изучением влияния перестановок ортонормальных функций на сходимость и суммируемость рядов по этим функциям.  [21]

Рассмотрим теперь вопросы сходимости и устойчивости метода. Мы не будем приводить здесь доказательств, а ограничимся только формулировкой окончательных результатов.  [22]

Совершенно бесполезно исследовать вопросы сходимости для нелинейных уравнений. Тем не менее можно ожидать, что все отмеченные выше трудности для нелинейных уравнений возрастут и к ним добавятся новые. Как показывают численные расчеты, эти ожидания полностью оправдываются.  [23]

Наиболее трудными являются вопросы сходимости в среднем рядов Фурье по многочленам Чебышева-Эрмита.  [24]

Совершенно бесполезно исследовать вопросы сходимости для нелинейных уравнений. Тем не менее можно ожидать, что все отмеченные выше трудности для нелинейных уравнений возрастут и к ним добавятся новые. Как показывают численные расчеты, эти ожидания полностью оправдываются.  [25]

После подробного исследования вопросов сходимости Коркин дает примеры на дифференцирование и интегрирование найденных им рядов. Он рассматривает аналогичные формулы для функции от нескольких переменных. Потом переходит к другим формулам, представляющим произвольные функции.  [26]

При решении же вопросов сходимости последовательности хь к решению условной задачи, естественно, необходимо учитывать свойства комбинаторного пространства и специфику функций, определяемых в этом пространстве.  [27]

Повторные пределы в вопросах сходимости служат основным источником головной боли. Дескать, предел удобно вычислять последовательно. Сначала по одной переменной, потом - по другой. Но повторные пределы не всегда равны. А если равны, то нет гарантии, что они совпадают с искомым, как говорят, двойным пределом.  [28]

Читателям, которых беспокоит вопрос сходимости, следует рассматривать тслько плотности /, сосредоточенные на конечном интервале. Если / конотсшш npii достаточно больших А и - х, но, очевидно, имеет место равномерная сходимость.  [29]

В них детально обсуждены вопросы сходимости метода. Мы только отметим, что для сходимости итерационного процесса метода Ньютона - Рафсона начальное приближение обычно не должно слишком сильно отличаться от искомого решения.  [30]



Страницы:      1    2    3    4