Аксиома - система - Большая Энциклопедия Нефти и Газа, статья, страница 1
Жизнь похожа на собачью упряжку. Если вы не вожак, картина никогда не меняется. Законы Мерфи (еще...)

Аксиома - система

Cтраница 1


Аксиомы системы имеют один из видов: ( р - ( р или L - у, где ( р - произвольная формула.  [1]

Из аксиом системы Н и теоремы 1 вытекает, что минимальной ( т, га) - плоскостью должна быть ( 2, 2 -плос-кость, если она существует.  [2]

С другой стороны, аксиомы системы ( Z) выводятся в упомянутом ранее формализме2), получающемся расширением рекурсивной арифметики.  [3]

Мне хотелось бы подчеркнуть, что аксиомы системы совершенно очевидны. Аксиома с 5 должна быть признана всеми логиками, которые принимают классическое исчисление предложений; аксиомы с М также Должны быть приняты в качестве истинных; наконец, правила вывода также очевидны.  [4]

Но все эти формулы выводимы из аксиом системы ( Z) средствами элементарного исчисления со свободными переменными.  [5]

6 Систематически построенное дерево всех теорем системы MIU. N-ный уровень внизу содержит теоремы, для вывода которых понадобилось ровно N шагов. Номера в кружках говорят нам, с помощью какого правила была получена данная теорема. Растет ли на этом дереве MU. [6]

Безусловно, как правила вывода, так и аксиомы системы МШ косвенно характеризуют строчки, являющиеся теоремами; еще более косвенно они характеризуют строчки, теоремами не являющиеся. Однако косвенная характеристика часто недостаточна. Если кто-нибудь утверждает, что он имеет в своем распоряжении характеристику всех теорем, но при этом трэда бесконечное время, чтобы установить, что данная строчка не является теоремой, вы, скорее всего, подумаете, что в его характеристике чего-то не хватает - она недостаточно конкретна. Именно поэтому так важно установить, есть ли t данной системе алгоритм разрешения.  [7]

Наша программа будет состоять в следующем: из аксиом системы ID мы постараемся вывести, что операции а и ( д, задают на множестве е структуру тела. Сначала мы рассмотрим те аксиомы тела, справедливость которых на е вытекает из 1Ъ 12 и 13, а затем уже те, которые требуют присоединения теоремы Дезарга.  [8]

Выделяется некоторое множество конечных формул, которые называются аксиомами системы. В ЭМ существует большое число аксиом.  [9]

При таком распределении истинностных значений постоянных элементарных формул все аксиомы системы ( Z), как легко убедиться1), оказываются верифицируемыми формулами. Поэтому для системы ( Z) при условии исключения из нее схемы индукции будут справедливы все утверждения нашей нп-теоремы и, в частности, утверждение о том, что всякая выводимая формула, не содержащая ни связанных индивидных, ни формульных переменных, является верифицируемой.  [10]

Z), производится с помощью исчисления предикатов и аксиом системы ( Z) с добавлением е-символа и е-фор-мулы, то применения е-символа и е-формулы в этом выводе могут быть заменены соответствующими применениями i-правила.  [11]

Каждая формула, выводимая из совокупности всех отличных от 51 аксиом системы, также принимает значение а при всех значениях входящих переменных.  [12]

Поэтому формализм Plt состоящий из исчисления предикатов, символов и аксиом системы ( Z), е-сим-вола, взятого вместе с s - формулой, и двух принимаемых в качестве аксиом формул [ е ], был бы противоречивым.  [13]

Нужно доказать, что каждая модель А, на которой истинны все аксиомы системы, принадлежит К. Обозначим через аа ( а ( ЕЕ Г) все элементы А и с каждым аа сопоставим новый символ са.  [14]

Следовательно, применение схемы индукции во всяком таком доказательстве равносильно добавлению к аксиомам системы ( Z) некоторого числа верифицируемых формул. Отсюда, согласно сделанному выше замечанию, получается, что если в рассматриваемый формализм включить аксиому индукции, применяемую к формулам без связанных переменных, то условия применимости нп-теоремы к этому формализму будут выполнены.  [15]



Страницы:      1    2    3