Ионные двойники - Большая Энциклопедия Нефти и Газа, статья, страница 3
Ты слишком много волнуешься из-за работы. Брось! Тебе платят слишком мало для таких волнений. Законы Мерфи (еще...)

Ионные двойники

Cтраница 3


31 Зависимость константы ассоциации нитрата тетраизоамиламмо-ния от диэлектрической проницаемости растворителя в смесях диоксана с водой при 25 С. [31]

Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными: диэлектрической проницаемостью, которая характеризует свойства растворителя, и расстоянием наибольшего сближения ионов а. Величина а для одного и того же электролита в различных растворителях изменяется не сильно, и можно ожидать, что степень ассоциации ионов в ионные двойники или тройники в растворителях с одной и той же диэлектрической проницаемостью будет одинакова. Однако наблюдается очень резкое различие между степенями диссоциации ( ассоциации) электролитов в растворителях, имеющих одинаковые диэлектрические проницаемости. Это говорит о том, что при ассоциации ионов в ионные двойники, тройники и более сложные образования играет большую роль химическая природа реагирующих ионов и растворителей, и, следовательно, ионные двойники образуются не только за счет чисто кулоновского взаимодействия.  [32]

Мы установили, что свойства электролитов средней силы в водных растворах и свойства сильных истинных электролитов в неводных растворах зависят от обеих причин: и от образования онной атмосферы и от равновесия между свободными ионами и ионами, связанными в ионные двойники и в ионные тройники.  [33]

В настоящее время установлено, что в более концентрированных растворах между заряженными ионами возникает взаимодействие не только электростатического, но и химического порядка. В частности, было установлено, что в концентрированных растворах электролитов в воде ( а в неводных растворителях с низкой диэлектрической постоянной и при умеренных концентрациях электролита) возможно образование ионных пар или ионных двойников. Ионные двойники из положительно и отрицательно заряженных ионов появляются в результате действия чисто кулоновских сил, поэтому они менее прочны, чем недиссоциированные молекулы электролита.  [34]

В настоящее время установлено, что в более концентрированных растворах между заряженными ионами возникает взаимодействие не только электростатического, но и химического порядка. В частности, было установлено, что в концентрированных растворах электролитов в воде ( а в неводных растворителях с низкой диэлектрической постоянной и при умеренных концентрациях электролита) возможно образование ионных пар, или ионных двойников. Ионные двойники из положительно и отрицательно заряженных ионов появляются в результате действия чисто кулоновских сил, поэтому они менее прочны, чем недиссоциированные молекулы электролита. Однако связи, удерживающие ионы вместе, достаточно сильны для того, чтобы первоначальные ионы потеряли свою самостоятельность и стали проявлять свойства незаряженных частиц.  [35]

Удельная электропроводность раствора также зависит от его концентрации. Это объясняется процессами ассоциации ионов в ионные двойники, которые не проводят ток, уменьшением скорости движения ионов вследствие межионных взаимодействий, а для слабых электролитов также уменьшением степени их диссоциации.  [36]

Величина а для одного и того же электролита в различных растворителях изменяется не сильно, и можно ожидать, что степень ассоциации ионов в ионные двойники или тройники в растворителях с одной и той же диэлектрической проницаемостью будет одинакова. Однако наблюдается очень резкое различие между степенями диссоциации ( ассоциации) электролитов в растворителях, имеющих одинаковые диэлектрические проницаемости. Это говорит о том, что при ассоциации ионов в ионные двойники, тройники и более сложные образования играет большую роль химическая природа реагирующих ионов и растворителей, и, следовательно, ионные двойники образуются не только за счет чисто кулоновского взаимодействия.  [37]

Величина а для одного и того же электролита в различных растворителях изменяется не сильно, и можно ожидать, что степень ассоциации ионов в ионные двойники или тройники в растворителях с одной и той же диэлектрической проницаемостью будет одинакова. Однако наблюдается очень резкое различие между степенями диссоциации ( ассоциации) электролитов в растворителях, имеющих одинаковые диэлектрические проницаемости. Это говорит о том, что при ассоциации ионов в ионные двойники, тройники и более сложные образования играет большую роль химическая природа реагирующих ионов и растворителей, и, следовательно, ионные двойники образуются не только за счет чисто кулоновского взаимодействия.  [38]

Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными: диэлектрической проницаемостью, которая характеризует свойства растворителя, и расстоянием наибольшего сближения ионов а. Величина а для одного и того же электролита в различных растворителях изменяется не сильно, и можно ожидать, что степень ассоциации ионов в ионные двойники или тройники в растворителях с одной и той же диэлектрической проницаемостью будет одинакова. Однако наблюдается очень резкое различие между степенями диссоциации ( ассоциации) электролитов в растворителях, имеющих одинаковые диэлектрические проницаемости. Это говорит о том, что при ассоциации ионов в ионные двойники, тройники и более сложные образования играет большую роль химическая природа реагирующих ионов и растворителей, и, следовательно, ионные двойники образуются не только за счет чисто кулоновского взаимодействия.  [39]

Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными: диэлектрической проницаемостью, которая характеризует свойства растворителя, и расстоянием наибольшего сближения ионов а. Величина а для одного и того же электролита в различных растворителях изменяется не сильно, и можно ожидать, что степень ассоциации ионов в ионные двойники или тройники в растворителях с одной и той же диэлектрической проницаемостью будет одинакова. Однако наблюдается очень резкое различие между степенями диссоциации ( ассоциации) электролитов в растворителях, имеющих одинаковые диэлектрические проницаемости. Это говорит о том, что при ассоциации ионов в ионные двойники, тройники и более сложные образования играет большую роль химическая природа реагирующих ионов и растворителей, и, следовательно, ионные двойники образуются не только за счет чисто кулоновского взаимодействия.  [40]

ИОнов и 1S 7о 0лекУл близки для кислот одной природы и сильно отличаются для кислот различной природы. Изменение активности ионов разной природы объясняется изменением энергии сольватации анионов. Изменение коэффициентов активности недиссоциированных молекул объясняется различием в энергии присоединения к ним молекул растворителей, которое становится особенно значительным при переходе от растворителя одной природы к растворителю другой природы. Третьим типом является дифференцирующее действие основных растворителей с низкой диэлектрической проницаемостью. Величина этого дифференцирующего действия полностью зависит от различия в ассоциации ионов в ионные двойники и численно определяется значением констант ассоциации ионов.  [41]

Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция ( IV) обычно проходит до конца, а реакция ( V) практически еще не начинается. Например, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN03 - H20 и HN03 - 3H20; одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют на солъватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика ( смеси диоксана с водой), то образуются ионные молекулы - ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов.  [42]

Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разведенных растворах, в которых определяются термодинамические константы, реакция ( IV) обычно проходит до конца, а реакция ( V) практически еще не начинается. Например, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава НМОз ШО и HNO3 ЗН2О; одновременно изменяется степень ассоциации воды. При дальнейшем разведении эти продукты диссоциируют на сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика ( смеси диоксана с водой), го образуются ионные молекулы - ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов.  [43]



Страницы:      1    2    3